Some Basic Concepts of Chemistry

ANSWERS

1. (c) : Planck's constant $=\mathrm{J} \mathrm{s}$

Force $=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
2. (d) : Molecular mass of $\mathrm{HCl}=36.5$

No. of gram moles in 0.365 g of $\mathrm{HCl}=\frac{0.365}{36.5}=0.01$
Volume of solution in $\mathrm{L}=\frac{100}{1000}=0.1 \mathrm{~L}$
Molarity $=\frac{n}{V \text { in } \mathrm{L}}=\frac{0.01}{0.1}=0.1 \mathrm{M}$
3. (c) :22.4 L of methane reacts with 44.8 L of oxygen to give 22.4 L of CO_{2} and 44.8 L of water.
4. (a) : Mass percent of $X=\frac{\text { Mass of } X}{\text { Massof solution }} \times$ 100

$$
=\frac{5}{5+45} \times 100=10 \%
$$

5. (a): Volume of steam $=1$ litre $=10^{3} \mathrm{~cm}^{3}$

Mass of 10^{3} cc steam $=$ Density \times Volume

$$
=0.0006 \times 10^{3}=0.6 \mathrm{~g}
$$

Actual volume occupied by $\mathrm{H}_{2} \mathrm{O}$ molecules of steam is equal to volume of water of same mass.
\therefore Actual volume of $\mathrm{H}_{2} \mathrm{O}$ molecules in 0.6 g steam

$$
=\frac{\text { Mass of steam }}{\text { Density of } \mathrm{H}_{2} \mathrm{O}}=\frac{0.6 \mathrm{~g}}{1 \mathrm{~g} / \mathrm{cm}^{3}}=0.6 \mathrm{~cm}^{3}
$$

6. (c) : $2 \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Moles of $\mathrm{NaOH}=\frac{20}{40}=\frac{1}{2}$, moles of $\mathrm{CO}_{2}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Moles of CO $=1-\frac{1}{4}=\frac{3}{4}$
Moles of CO_{2} produced $=\frac{3}{4}($ from CO$)$
$\therefore \quad$ Extra moles of NaOH required $=\frac{3}{4} \times 2=\frac{3}{2}$
$\therefore \quad$ Mass of extra $\mathrm{NaOH}=\frac{3}{2} \times 40=60 \mathrm{~g}$

OR

(b) $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

Thermal decomposition of 2 moles of KClO_{3} produces 3 moles of O_{2}.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

3 moles of O_{2} forms 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
7. (c) : No. of moles of BaCl_{2} in 100 mL of solution

$$
=\frac{100 \times 0.5}{1000}=0.05
$$

No. of moles of Cl^{-}ions in BaCl_{2} solution
$=2 \times 0.05=0.1$
No. of moles of KCl in 100 mL solution $=\frac{100 \times 0.2}{1000}=0.02$
No. of moles of Cl^{-}ions in KCl solution $=0.02$
Total volume after mixing $=100+100+100=300 \mathrm{~mL}$
Total moles of Cl^{-}ions $=0.1+0.02=0.12$
\therefore Moles of Cl^{-}present per $\mathrm{mL}=\frac{0.12}{300}$
$\therefore \quad$ No. of Cl^{-}ions per $\mathrm{mL}=\frac{0.12}{300} \times 6.022 \times 10^{23}$

$$
=2.408 \times 10^{20} \text { ions }
$$

8. Avogadro's Law
9. $\mathrm{CH}_{2} \mathrm{O}$
10. $M_{1} V_{1}=M_{2} V_{2}=V_{2}=\frac{M_{1} V_{1}}{M_{2}}=\frac{2 \times 5}{10}=1 \mathrm{~L}$
11. (d): 22.4 L of H_{2} at S.T.P. contains 1 mole, Therefore, 0.224 L of H_{2} at S.T.P contains 0.01 moles.
12. (b)
13. (c): Atomic masses of most of the elements are fractional.
14. (a): Zeros between non-zero digits are significant.

OR

(c) Zero at the end or right of a number are significant provided they are on the right side of the decimal point.
15. Molality involves only masses which do not change with temperature whereas molarity involves volume which changes with temperature. Hence, molality is preferred over molarity. The SI unit of molarity is $\mathrm{mol}_{\mathrm{dm}}{ }^{-3}$.
16. A molecule is a group of two or more atoms of same element held together by chemical bonds e.g., oxygen,
hydrogen etc. A compound is a substance which is formed by two or more different types of elements which are united chemically in a fixed proportion, e.g., sugar, water etc.
17. Relative Abundance (\%) $\Rightarrow N_{2}=79 \%, O_{2}=21 \%$

$$
x_{\mathrm{N}_{2}}=0.79, x_{\mathrm{O}_{2}}=0.21, M_{\mathrm{N}_{2}}=28 \mathrm{u}, M_{\mathrm{O}_{2}}=32 \mathrm{u}
$$

$\therefore \quad$ Average molecular mass of air

$$
=(0.79 \times 28+0.21 \times 32) u=28.84 u
$$

OR

When a heap of straw is ignited in air then the sum of the masses of the straw and the reacting oxygen will certainly be the same as the sum of the masses of ash, carbon dioxide and water vapour produced, i.e., law of conservation of mass is applicable here. The gaseous carbon dioxide and water vapour escape from the system and only the ash remains as residue.
18. (i) $\frac{5.79 \times 0.07326}{9.003}=0.047115=0.0471$

Number of significant figures in the term 5.79 (least number of significant figures) is 3 . Therefore, result should have 3 significant figures.
(ii) $845 \times 0.00219+202=1.85055+202=203.85055$ $=204$ (after rounding off)
Answer should have 3 significant figures.
19. (i) Same molecular formula and empirical formula - CH_{4} (methane).
(ii) Different molecular formula and empirical formula $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ glucose, its empirical formula is $\mathrm{CH}_{2} \mathrm{O}$.

OR

Molar mass of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$

$$
=2 \times 12+5 \times 1+16+1=46
$$

Mass percent of carbon $=\frac{24}{46} \times 100=52.17 \%$
Mass percent of hydrogen $=\frac{6}{46} \times 100=13.04 \%$
Mass percent of oxygen $=\frac{16}{46} \times 100=34.78 \%$
20. Experiment 1
0.3 g of X combines with 0.4 g of Y
$\therefore \quad 1 \mathrm{~g}$ of X combines with $\frac{0.4}{0.3}=1.33 \mathrm{~g}$ of Y
Experiment 2
18 g of X combines with 48 g of Y
$\therefore \quad 1 \mathrm{~g}$ of X combines with $\frac{48}{18}=2.67 \mathrm{~g}$ of Y
Experiment 3
40 g of X combines with 160 g of Y
$\therefore \quad 1 \mathrm{~g}$ of X combines with $\frac{160}{40}=4 \mathrm{~g}$ of Y
For a given fixed mass of X, the element Y bears a ratio of $1.33: 2.66: 4=1: 2: 3$. Hence, the law of multiple proportion is proved here. The law states, when two elements combine to form two or more chemical compounds, then the masses of one of the elements which combine with a fixed mass of the other element bear a simple ratio to one another.
21. (i) Total money to be spent = Avogadro's number $=$ Rs. 6.022×10^{23}
Time taken to spend Rs. $6.022 \times 10^{23}=\frac{6.022 \times 10^{23}}{10^{5}} \mathrm{sec}$
$=6.022 \times 10^{18} \mathrm{sec}$
$=\frac{6.022 \times 10^{18}}{60 \times 60 \times 24 \times 365} \mathrm{yrs}=1.91 \times 10^{11} \mathrm{yrs}$
(ii) One molal solution is a solution in which one mole of solute is present in 1000 g of solvent.

OR

(i) 88 g of $\mathrm{CO}_{2}=\frac{88}{44}=2$ moles

1 mole of CO_{2} has $2 \times N_{A}$ atoms of oxygen
2 moles of CO_{2} will have $2 \times 2 \times N_{A}=4 N_{A}$ atoms of oxygen In one mole of CO, oxygen present $=1 \times N_{A}$ atoms Thus, $4 N_{A}$ atoms of oxygen $\equiv 4$ moles of CO
Mass of 4 moles of $\mathrm{CO}=4 \times 28=112 \mathrm{~g}$
(ii) Mass of one molecule of ${ }^{14} \mathrm{CO}_{2}$
$=14+2 \times 16$
$=14+32=46 u$
22. (i) No. of moles of urea $=\frac{120}{60}=2$

Total mass of the solution $=(1000+120) \mathrm{g}=1120 \mathrm{~g}$
Volume of the solution $=\frac{1120}{1.15}=974 \mathrm{~mL}$
\therefore Molarity $=\frac{2}{974} \times 1000=2.05 \mathrm{M}$
(ii) 1 L solution contains $230 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$.
(\because Solution is $23 \% \mathrm{w} / \mathrm{V}$)
No. of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{230}{98}=2.35$
Mass of solution $=v \times d=1000 \times 1.4=1400 \mathrm{~g}$
Mass of solvent $=1400-230=1170 \mathrm{~g}$
$\therefore \quad$ Molality $=\frac{2.35}{1170} \times 1000=2$ molal
23. (a) 108 g of Ag contains 6.022×10^{23} atoms.
$\therefore \quad 12.6 \times 10^{-3} \mathrm{~g}$ of Ag contains
$=\frac{6.022 \times 10^{23}}{108} \times 12.6 \times 10^{-3}$ atoms
$=7.02 \times 10^{19}$ atoms
7.02×10^{19} atoms of Al have mass $=\frac{27 \times 7.02 \times 10^{19}}{6.022 \times 10^{23}}$
$=3.15 \times 10^{-3} \mathrm{~g}$

Here, CaCO_{3} will be limiting reagent.
20 g of CaCO_{3} will react with HCl to produce $=\frac{44}{100} \times 20$ $=8.8 \mathrm{~g}$ of CO_{2}
24. $M_{1} V_{1}=M_{2} V_{2}$
or, $1 \times V_{1}=2 \times 200$
or, $V_{1}=400 \mathrm{~mL}$
[$M_{1}=$ molarity of NaOH solution,
$V_{1}=$ volume of NaOH solution,
Amount of NaOH
$M_{2}=$ molarity of HCl solution,
$=\frac{1 \times 400}{1000}=0.4$ moles
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
1 mole of NaOH produced 1 mole of NaCl .
$\therefore \quad$ Moles of NaCl produced $=0.4$
$\therefore \quad$ Mass of NaCl produced $=0.4 \times 58.5=23.4 \mathrm{~g}$
25. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 98% by mass.
$\therefore \quad$ Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g}$
Mass of solution $=100 \mathrm{~g}$
\therefore Volume of solution
$=\frac{100}{1.84} \mathrm{~mL}=\frac{100}{1.84 \times 1000} \mathrm{~L}=0.054 \mathrm{~L}$
$\therefore \quad M_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{W_{B}}{M_{B} \times V(\text { in L) }}=\frac{98}{98 \times 0.054}$
$=18.51 \mathrm{M}$
Let $V \mathrm{~mL}$ of this $\mathrm{H}_{2} \mathrm{SO}_{4}$ are used to prepare 5 L of 0.5 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
Then, millimoles of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}=$ millimoles of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(\because millimoles does not change on dilution.)
$V \times 18.51=5000 \times 0.5 \Rightarrow V=135.06 \mathrm{~mL}$
26. (a) Empirical formula mass of the compound $=30 u$ Molecular formula $=n \times$ Empirical formula
$n=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{180}{30}=6$
\therefore Molecular formula $=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) Mass of solution $=1000 \mathrm{~mL} \times 1.25 \mathrm{~g} \mathrm{~mL}^{-1}=1250 \mathrm{~g}$ Mass of solute
$=$ Molarity \times Molar mass of solute \times Volume (in L)
$=3 \times 58.5 \times 1=175.5 \mathrm{~g}$
Mass of solvent $=1250.0-175.5=1074.5 \mathrm{~g}$
$m=\frac{n}{w_{A}(\text { in } \mathrm{g})} \times 1000=\frac{3}{1074.5} \times 1000$

$$
=\frac{3000}{1074.5}=2.79 \mathrm{~mol} / \mathrm{kg}
$$

27. (a)

Element	\%	Atomic mass	Moles	Mole ratio or Atomic ratio	Simplest whole no. ratio
C	57.8	12	$\frac{57.8}{12}$	$\frac{4.82}{2.41}$	4
H	3.6	1	$\frac{3.6}{1}$ $=2$	$\frac{3.60}{2.41}$ $=3.60$ $=1.49$	3
O	38.6	16	$\frac{38.6}{16}$ $=2.41$	$\frac{2.41}{2.41}$ $=1$	2

\therefore Empirical formula $=\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$
Empirical formula mass

$$
=(4 \times 12)+(3 \times 1)+(2 \times 16)=83 u
$$

Molecular mass $=2 \times$ Vapour density

$$
=2 \times 83=166 u
$$

$n=\frac{\text { Molecularmass }}{\text { Empirical formula mass }}=\frac{166}{83}=2$
Hence, molecular formula $=n \times$ (empirical formula)

$$
=2 \times\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}\right)=\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}
$$

(b) $2 \mathrm{BCl}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{~B}+6 \mathrm{HCl}$

3 moles of H_{2} is consumed to give 2 moles of B.
or, $3 \times 22.4 \mathrm{~L}$ or $67.2 \mathrm{~L} \mathrm{H}_{2}$ is consumed to give 2×10.8 $=21.6 \mathrm{~g}$ of B
$\therefore \quad 21.6 \mathrm{~g}$ of B is produced by $67.2 \mathrm{LH}_{2}$
$\therefore \quad 108 \mathrm{~g}$ of B is produced by $=\frac{67.2 \times 108}{21.6} \mathrm{~L}$ of H_{2}
$=336 \mathrm{~L}$ of H_{2}
$\therefore \quad 336 \mathrm{~L}$ of H_{2} will be consumed.
28. (a) (i) Molar mass of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$=24+32+4 \times 16+7 \times 18=246 \mathrm{~g} / \mathrm{mol}$
Percentage by mass of $\mathrm{Mg}=\frac{24}{246} \times 100=9.76 \%$
(ii) Molar mass of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

$$
=39+27+2 \times(32+64)+12 \times 18=474 \mathrm{~g} / \mathrm{mol}
$$

Percentage by mass of $\mathrm{Al}=\frac{27}{474} \times 100=5.69 \%$
(b) 100 mL of air at S.T.P contains $=21 \mathrm{~mL}$ of O_{2}
$\therefore \quad 5000 \mathrm{~mL}$ of air at S.T.P contains $=\frac{21 \times 5000}{100} \mathrm{~mL}^{\text {of } \mathrm{O}_{2}}$ $=1050 \mathrm{~mL}$ of O_{2}

No. of moles of $\mathrm{O}_{2}=\frac{1050}{22400}=0.0469 \mathrm{moles}$
29. (i) Molar mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$=(63.5+32+64+90) \mathrm{g} / \mathrm{mol}=249.5 \mathrm{~g} / \mathrm{mol}$
So, mass of 6.023×10^{23} molecules of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$=249.5 \mathrm{~g}$
Therefore,
mass of 1×10^{22} molecules of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

$$
=\frac{249.5 \times 1 \times 10^{22}}{6.023 \times 10^{23}}=4.14 \mathrm{~g}
$$

(ii) 16 g of methane $=6.022 \times 10^{23}$ molecules
3.2 g of methane $=\frac{6.022 \times 10^{23} \times 3.2}{16}$ molecules

1 molecule of CH_{4} contains $=6+4=10$ electrons
$\therefore \quad 3.2 \mathrm{~g}$ of methane contains
$=\frac{10 \times 6.022 \times 10^{23} \times 3.2}{16}$ electrons
$=1.2044 \times 10^{24}$ electrons
(iii) 100 g of chlorophyll contains $\mathrm{Mg}=2.68 \mathrm{~g}$
$\therefore \quad 2.5 \mathrm{~g}$ of chlorophyll contains $\mathrm{Mg}=\frac{2.68 \times 2.5}{100} \mathrm{~g}=0.067 \mathrm{~g}$
1 mole of $\mathrm{Mg}=24 \mathrm{~g}=6.022 \times 10^{23}$ atoms
$\therefore \quad 0.067 \mathrm{~g}$ of $\mathrm{Mg}=\frac{6.022 \times 10^{23} \times 0.067}{24}$ atoms

$$
=1.68 \times 10^{21} \text { atoms }
$$

OR

(a) (i) $\underset{1 \text { mol }}{\mathrm{CH}_{3} \mathrm{NO}_{2}}+3 \mathrm{Cl}_{2} \longrightarrow \underset{1 \mathrm{~mol}}{\mathrm{CCl}_{3} \mathrm{NO}_{2}}+3 \mathrm{HCl}$
$=61 \mathrm{~g}$
$=164.5 \mathrm{~g}$
Thus, mass of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ required for
150 g of $\mathrm{CCl}_{3} \mathrm{NO}_{2}=\frac{61}{164.5} \times 150=55.6 \mathrm{~g}$

Thus, when 2 gS (i.e., $2 / 32$ mole) reacts with Mg, S acts as limiting reagent while Mg is in excess.
Thus, amount of product will be decided by moles of S and not by moles of Mg , therefore
1 mole S yields 1 mole MgS
$\therefore \quad$ Moles of MgS formed $=\frac{2}{32}$
and mass of MgS formed $=\frac{2}{32} \times 56=3.5 \mathrm{~g}$
(b) $\underset{2 \text { moles }}{2 \mathrm{KClO}_{3}} \rightarrow \underset{2 \text { moles }}{2 \mathrm{KCl}}+3$ moles

Volume of O_{2} produced by 2 moles or 245 g of KClO_{3}
$=3 \times 22.4 \mathrm{~L}$
\therefore Volume of O_{2} produced by 5.25 g of KClO_{3}
$=\frac{3 \times 22.4 \times 5.25}{245}=1.44 \mathrm{~L}$
30. (i) 1 amu or $1 \mathrm{u}=\frac{1}{12} \times \frac{12 \mathrm{~g}}{6.022 \times 10^{23}}=1.66 \times 10^{-24} \mathrm{~g}$
(ii) 1 mole O_{2} contains $=6.022 \times 10^{23}$ molecules

$$
\begin{aligned}
& =2 \times 6.022 \times 10^{23} \text { atoms } \\
& =2 \times 8 \times 6.022 \times 10^{23} \text { electrons } \\
& =9.6352 \times 10^{24} \text { electrons }
\end{aligned}
$$

(iii) 6.022×10^{23} molecules of methane have mass $=16 \mathrm{~g}$
$\therefore \quad 10^{23}$ molecules of methane have mass

$$
=\frac{16 \times 10^{23}}{6.022 \times 10^{23}} \mathrm{~g}=2.657 \mathrm{~g}
$$

(iv) $1: 1$
(v) 22.4 L of the gas at S.T.P will weigh $=1.97 \times 22.4 \mathrm{~g}=44.13 \mathrm{~g}$
Therefore, molecular mass of the gas is 44.13 u
Hence, vapour density will be $\frac{44.13}{2}=22.065$

mtG BEST SELLING BOOKS FOR CLASS 11

Visit www.mtg.in for complete information

