Structure of Atom

NCERT FOCUS

ANSWERS

Topic 1

1. (i) Mass of an electron is 9.109×10^{-31} kg. 1 g or 10^{-3} kg = $\frac{1}{9.109 \times 10^{-31}} \times 10^{-3}$ electrons $= 1.098 \times 10^{27}$ electrons (ii) Mass of one electron = 9.109×10^{-31} kg Mass of 1 mole of electrons $= 9.109 \times 10^{-31} \times 6.022 \times 10^{23} = 5.485 \times 10^{-7} \text{ kg}$ Charge of 1 electron = 1.602×10^{-19} C Charge of 1 mole of electrons $= 1.602 \times 10^{-19} \times 6.022 \times 10^{23} \text{ C} = 9.647 \times 10^{4} \text{ C}$ 2. (i) Total number of electrons present in one mole of CH_{4} $= 6 \times 6.022 \times 10^{23} + 4 \times 6.022 \times 10^{23}$ $= 10(6.022 \times 10^{23})$ $= 6.022 \times 10^{24}$ electrons (ii) (a) We know that, p + n = A $[\cdot: e = p = Z]$ 6 + n = 14n = 14 - 6 = 8Now, 1 mole of ${}^{14}C = 14$ g of C $= 6.022 \times 10^{23}$ atoms of ¹⁴C $= 6.022 \times 10^{23} \times 8$ neutrons $= 4.8176 \times 10^{24}$ neutrons (b) 14 g of ¹⁴C contains = 4.8176×10^{24} neutrons 7 mg (7 \times 10⁻³ g) of ¹⁴C contains $=\frac{4.8176 \times 10^{24} \times 7 \times 10^{-3}}{14}$ neutrons $= 2.4088 \times 10^{21}$ neutrons Mass of a neutron = 1.675×10^{-27} kg Mass of 2.4088 \times 10²¹ neutrons $= 1.675 \times 10^{-27} \times 2.4088 \times 10^{21} = 4.0347 \times 10^{-6}$ kg (iii) (a) 17 g of $\rm NH_3$ has 10 \times 6.022 \times 10^{23} electrons or protons = 6.022×10^{24} 34 mg (34 \times 10⁻³g) of NH₃ has protons $= \frac{6.022 \times 10^{24}}{17} \times 34 \times 10^{-3} = 1.2044 \times 10^{22} \text{ protons}$ (b) Mass of a proton = 1.675×10^{-27} kg Total mass of protons in 34×10^{-3} g of NH₃ $= 1.2044 \times 10^{22} \times 1.675 \times 10^{-27} \text{ kg} = 2.017 \times 10^{-5} \text{ kg}$

The answer will not change if the temperature and pressure are changed.

3. Charge of one electron = 1.602×10^{-19} C 2.5 × 10⁻¹⁶

Number of electrons present $=\frac{2.5 \times 10^{-16}}{1.602 \times 10^{-19}} = 1.56 \times 10^3$

4. Charge of one electron = -1.602×10^{-19} C

Number of electrons = $\frac{-1.282 \times 10^{-18}}{-1.602 \times 10^{-19}} \approx 8$

Topic 2

 ${}^{13}_{6}$ C: We know that, e = p = Z1. where, e = number of electrons, p = number of protons, Z = atomic numberHere, Z = p = 6 and A = 13[:: A = Mass number] $n = A - p = 13 - 6 \Longrightarrow n = 7.$ [:: A = p + n]Number of protons = 6 and number of neutrons = 7. $^{16}_{8}$ O : Here, p = 8, A = 16n = A - p = 16 - 8 = 8Number of neutrons = 8 and number of protons = 8. $^{24}_{12}$ Mg : Here, A = 24, p = 12n = A - p = 24 - 12 = 12Number of neutrons = 12 and number of protons = 12. $^{56}_{26}$ Fe : Here, p = 26, A = 56n = A - p = 56 - 26 = 30Number of neutrons = 30 and number of protons = 26. $^{88}_{38}$ Sr : Here, A = 88, p = 38 $n = A - p = 88 - 38 \Longrightarrow n = 50$ Number of neutrons = 50 and number of protons = 38. (ii) ²³³₉₂U **2.** (i) ³⁵₁₇Cl (iii) ⁹₄Be **3.** Wavelength of yellow light = 580 nm $= 580 \times 10^{-9} \text{ m}$ [:: 1 nm $= 10^{-9} \text{ m}$] Frequency $(\upsilon) = \frac{c}{\lambda}$ where, c = velocity of light = 3.0×10^8 m s⁻¹, $\lambda =$ wavelength of sodium lamp $v = \frac{3.0 \times 10^8}{580 \times 10^{-9}} = 5.17 \times 10^{14} \text{ s}^{-1}$ Again, wavenumber $(\overline{v}) = \frac{1}{\lambda} = \frac{1}{580 \times 10^{-9} \text{ m}}$

MtG100PERCENT Chemistry Class-11

 $= 1.724 \times 10^{6} \text{ m}^{-1}$ Therefore, frequency = $5.17 \times 10^{14} \text{ s}^{-1}$ and wavenumber $= 1.724 \times 10^{6} \text{ m}^{-1}$. **4.** (i) We know that, E = hv

where, E = energy of photons, h = Planck's constant, $\upsilon =$ frequency of light

:. $E = hv = 6.626 \times 10^{-34} \times 3 \times 10^{15} = 1.99 \times 10^{-18} \text{ J}$

 $E = \frac{hc}{hc}$ (ii)

where, c = velocity of light, h = Planck's constant, $\lambda =$ wavelength

$$E = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{0.50 \times 10^{-10}} = 3.98 \times 10^{-15} \text{ J}$$

Frequency of a light wave 5.

$$(\upsilon) = \frac{1}{\text{Time period}} = \frac{1}{2.0 \times 10^{-10}} = 5 \times 10^9 \text{ s}^{-1}$$
Wavelength of light wave $(\lambda) = \frac{c}{\upsilon} = \frac{3 \times 10^8}{5 \times 10^9} = 6.0 \times 10^{-2} \text{ m}$
Wavenumber of light wave $(\overline{\upsilon}) = \frac{1}{\lambda}$

$$= \frac{1}{6.0 \times 10^{-2}} = 16.6 \text{ m}^{-1}$$

Therefore, wavelength, frequency and wave-number of the light wave are 6.0×10^{-2} m, 5×10^{9} s⁻¹ and 16.6 m⁻¹ respectively.

Wavelength of light (λ) = 4000 pm 6. $= 4000 \times 10^{-12} \text{ m} = 4 \times 10^{-9} \text{ m}$ [: 1 pm = 10^{-12} m] $E = hv = h \times \frac{c}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{4 \times 10^{-9}}$ $= 4.97 \times 10^{-17} \text{ J}$

Number of photons providing 1 J of energy

$$= \frac{1}{4.97 \times 10^{-17}} = 2.012 \times 10^{16} \text{ photons.}$$

7. (i) Energy of photon (*E*) = $\frac{nc}{\lambda}$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{4 \times 10^{-7}} = 4.9695 \times 10^{-19} \text{ J}$$
$$= \frac{4.9695 \times 10^{-19}}{1.6020 \times 10^{-19}} = 3.102 \text{ eV}$$

(ii) Kinetic energy of the emission = energy of photon - work function = (3.102 - 2.13) eV = 0.972 eV $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ $0.972 \text{ eV} = 1.602 \times 10^{-19} \times 0.972 \text{ J} = 1.557 \times 10^{-19} \text{ J}$ (iii) *K.E.* = $\frac{1}{2}mv^2$ Velocity of the photoelectron (v) = $\sqrt{\frac{2 \text{ K.E.}}{m}}$

$$v = \sqrt{\frac{2 \times 1.557 \times 10^{-19}}{9.1 \times 10^{-31}}} = 5.85 \times 10^5 \text{ m s}^{-1}$$

8. Here, $\lambda = 242 \text{ nm} = 242 \times 10^{-9} \text{ m}$

$$l.E. = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{242 \times 10^{-9}}$$

$$= 8.214 \times 10^{-19} \text{ J/atom}$$

lonisation energy of sodium in kJ mol⁻¹

$$= 8.214 \times 10^{-19} \times 10^{-3} \times 6.022 \times 10^{23}$$

$$= 494.65 \text{ kJ mol}^{-1}$$

9. Power of bulb = 25 watt = 25 J s⁻¹

Energy of photon (E) =
$$\frac{\pi c}{\lambda}$$

$$\frac{6.626 \times 10^{-34} \times 3 \times 10^8}{0.57 \times 10^{-6}} \qquad [\because 1 \ \mu\text{m} = 10^{-6} \ \text{m}]$$

 $= 34.87 \times 10^{-20}$ J

l

1

= =

=

Rate of emission of quanta per second

$$= \frac{25}{34.87 \times 10^{-20}} = 0.7169 \times 10^{20} = 7.169 \times 10^{19} \text{ s}^{-1}$$

10. Threshold frequency

$$(\upsilon_0) = \frac{c}{\lambda} = \frac{3 \times 10^8}{6800 \times 10^{-10}} \qquad [1 \text{ Å} = 10^{-10} \text{ m}]$$
$$= 4.41 \times 10^{14} \text{ s}^{-1}$$

Work function $(W_0) = hv_0$ $= 6.626 \times 10^{-34} \times 4.41 \times 10^{14} = 2.92 \times 10^{-19}$ J

11. According to Rydberg equation,

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Here, $n_1 = 2$, $n_2 = 4$ and $R_{\rm H} = 109677$ cm⁻¹

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = 109677 \left(\frac{1}{4} - \frac{1}{16}\right)$$
$$= 109677 \left(\frac{4-1}{16}\right) = 109677 \times \frac{3}{16} \text{ cm}^{-1}$$
$$\implies \lambda = \frac{16}{109677 \times 3} = \frac{16}{329031} = 4.86 \times 10^{-5} \text{ cm}$$
$$= 486 \times 10^{-9} \text{ m} = 486 \text{ nm} \qquad [\because 1 \text{ nm} = 10^{-9} \text{ m}]$$

12.
$$E_n = \frac{13.12 \times 10^5}{n^2}$$
 J/mole

Energy required to remove the electron completely from

$$n = 5 \text{ orbital of H-atom is} = \frac{13.12 \times 10^{5}}{5^{2}} \text{ J/mole}$$
$$= 5.248 \times 10^{4} \text{ J/mole} = \frac{5.248 \times 10^{4}}{6.022 \times 10^{23}}$$
$$= 8.71 \times 10^{-20} \text{ J/atom}$$

Energy required to remove the electron completely from n = 1 orbit in a H-atom is

$$= \frac{13.12 \times 10^5}{1^2} \text{ J/mol} = 13.12 \times 10^5 \text{ J/mol}$$
$$= \frac{13.12 \times 10^5}{6.022 \times 10^{23}} = 2.17 \times 10^{-18} \text{ J/atom}$$

:. Energy required to remove the electron from n = 1 orbit is 25 times than that required to remove the electron from n = 5.

13. Maximum number of emission lines

$$= \frac{n(n-1)}{2} = \frac{6(6-1)}{2} = \frac{30}{2} = 15$$
 lines

14. (i) Energy associated with n^{th} orbit in hydrogen atom is

$$E_n = \frac{-2.18 \times 10^{-18}}{n^2} \,\mathrm{J}\,\mathrm{atom}^{-1}$$

: Energy associated with 5th orbit is

$$E_5 = \frac{-2.18 \times 10^{-18}}{5^2} = -8.72 \times 10^{-20} \,\mathrm{J}\,\mathrm{atom}^{-1}$$

(ii) Radius of Bohr's fifth orbit for hydrogen atom,

 $r_n = 0.529 \ n^2 \text{\AA}$

$$r_{5} = 0.529 \times 5^{2} \text{ A}$$

$$r_{5} = 13.225 \text{ Å} = 13.225 \times 10^{-10} \text{ m} \qquad [\because 1 \text{ Å} = 10^{-10} \text{ m}]$$

$$= 1.3225 \times 10^{-9} \text{ m} = 1.3225 \text{ nm} \qquad [\because 1 \text{ nm} = 10^{-9} \text{ m}]$$

15. According to Rydberg equation,

$$\frac{1}{\lambda} = \overline{\upsilon} (\text{cm}^{-1}) = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
$$= 109677 \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = 109677 \left(\frac{1}{4} - \frac{1}{9} \right)$$
$$= 109677 \times \frac{5}{36} \text{ cm}^{-1} = 1.5233 \times 10^4 \text{ cm}^{-1}$$

Wavenumber for the longest wavelength of Balmer series $= 1.523 \times 10^6 \; m^{-1}$

16. Energy (*E*) = 2.18 × 10⁻¹⁸ J
$$\left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right)$$

where, n_i = initial orbit, n_f = final orbit

$$E = 2.18 \times 10^{-18} \left(\frac{1}{1^2} - \frac{1}{5^2} \right)$$

$$= 2.18 \times 10^{-18} \left(\frac{1}{1} - \frac{1}{25} \right) = 2.18 \times 10^{-18} \times \frac{24}{25}$$

$$= 2.09 \times 10^{-18} J = 2.09 \times 10^{-11} \text{ erg} \qquad [\because 1 J = 10^7 \text{ erg}]$$
Wavelength $= \frac{hc}{E} = \frac{6.626 \times 10^{-27} \times 3 \times 10^{10}}{2.09 \times 10^{-11}}$
9.51 × 10⁻⁶ cm = 951 × 10⁻⁸ cm = 951 Å
17. $E_n = \frac{-2.18 \times 10^{-18}}{n^2} J$

$$E_2 = \frac{-2.18 \times 10^{-18}}{(2)^2} = \frac{-2.18 \times 10^{-18}}{4}$$

$$= -0.545 \times 10^{-18} = -5.45 \times 10^{-19} J$$
Wavelength of light $(\lambda) = \frac{hc}{E}$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{5.45 \times 10^{-19}} = 3.647 \times 10^{-7} \text{ m}$$
18. Species
Na⁺
Number of electrons
Solver and the second second

Thus, Na^+ and Mg^{2+}; K^+, Ca^{2+}, S^{2-} and Ar have the same number of electrons.

= 18

19.	Species	Number of electrons
	H_2^+	1(1 + 1 - 1 = 1)
	H ₂	2 (1 + 1 = 2)
	0 ₂ ⁺	15 (8 + 8 - 1 = 15)
20.	$\frac{1}{\lambda} = \overline{v} = 1.097 \times 10$	$D^7 Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] m^{-1}$

Ar

where, n_1 = number of the lower energy level, n_2 = number of the higher energy level, Z = atomic number, λ = wavelength, v = wavenumber

For He⁺,

$$\frac{1}{\lambda} = 1.097 \times 10^7 \times (2)^2 \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] m^{-1}$$

$$= 1.097 \times 10^7 \times 4 \left(\frac{3}{16} \right) = 1.097 \times 10^7 \times \frac{3}{4} \qquad \dots (i)$$

For H atom,
$$\frac{1}{\lambda} = 1.097 \times 10^7 \times (1)^2 \times \frac{3}{4}$$

= $1.097 \times 10^7 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \dots$ (ii)

On comparing (i) and (ii)

$$\frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{3}{4}$$
. This gives $n_1 = 1, n_2 = 2$

The transition $n_1 = 1$ to $n_2 = 2$ in H-atom would have the same wavelength as Balmer transition $n_2 = 4$ to $n_1 = 2$ of He⁺.

21. Energy required $= E_{\infty} - E_{1}$

$$= 0 - \left(-\frac{2.18 \times 10^{-18}}{n^2} \times Z^2 \right) = \frac{2.18 \times 10^{-18} \times 2^2}{(1)^2}$$
$$= 8.72 \times 10^{-18} \text{ J}$$

22. Lesser number of α -particles will be deflected because nucleus of lighter atoms have smaller positive charge on their nuclei.

23. Atomic number should be a subscript while mass number should be a superscript of the symbol of an element. Thus, $^{35}_{79}$ Br is not acceptable.

The atomic number is fixed, but different isotopes of bromine atoms may have different mass numbers. Therefore, it is essential to mention mass number.

24. We know that $A = p + n \Longrightarrow 81 = p + n$ Let number of protons = *x* According to question,

No. of neutrons
$$= x + \frac{x \times 51.7}{100} = 1.317x$$

$$\therefore$$
 x + 1.317x = 81 or 2.317x = 81

$$x = \frac{1}{2.317} = 34.96 \approx 35$$

Thus, symbol = ${}^{81}_{35}Br$

25. Let number of electrons = x

According to the question, number of neutrons (*n*)

$$= x + \frac{x \times 11.1}{100} = \frac{100x + 11.1x}{100} = \frac{111.1x}{100} = 1.11x$$

We know that $A = p + n$
But $p = x - 1$
 $37 = x - 1 + 1.11x$ or $38 = 2.11x$
 $\therefore x = \frac{38}{2.11} = 18$
So, number of electrons = 18
Hence, number of protons = $18 - 1 = 17$

Thus, symbol of ion = ${}^{37}_{17}$ Cl⁻

26. Let the number of protons(p) = x

... Number of electrons (e) = x - 3 (because the ion carries 3 units of positive charge, it will have 3 electrons less than the number of protons.)

Number of neutrons(*n*)

$$= (x - 3) + \frac{(x - 3)30.4}{100} = \frac{100(x - 3) + (x - 3)30.4}{100}$$
$$n = \frac{100x - 300 + 30.4x - 91.2}{100} = \frac{130.4x - 391.2}{100}$$

We know that
$$A = p + n$$

 $56 = x + \frac{130.4x - 391.2}{100}$

$$56 = \frac{100x + 130.4x - 391.2}{100}$$

$$5600 = 230.4x - 391.2$$

Thus, number of protons (p) = 26, number of electrons (e) = 26 - 3 = 23

Therefore, symbol of the ion = $\frac{56}{26}$ Fe³⁺

27. The increasing order of frequency is (c) radiation from FM radio < (a) radiation from microwave oven < (b) amber light from traffic signal < (e) X-rays < (d) cosmic rays from outer space.

28. Wavelength of nitrogen = $337.1 \text{ nm} = 337.1 \times 10^{-9} \text{ m}$ Number of photons = 5.6×10^{24}

Energy of photons (*E*) =
$$\frac{nhc}{\lambda}$$

= $\frac{5.6 \times 10^{24} \times 6.626 \times 10^{-34} \times 3 \times 10^8}{337.1 \times 10^{-9}}$ = 3.30 × 10⁶.

Power of this nitrogen laser is 3.30×10^6 J

29. Wavelength of light (λ) = 616 nm

$$= 616 \times 10^{-9} \text{ m} [\because 1 \text{ nm} = 10^{-9} \text{ m}]$$

(a) Frequency of emission (v) = $\frac{c}{\lambda}$ 3 × 10⁸

$$=\frac{3\times10}{616\times10^{-9}}=4.87\times10^{14}$$
 sec⁻

- (b) Distance travelled in 30 sec
- $= 30 \times 3 \times 10^8 = 9.0 \times 10^9 \text{ m}$
- (c) Energy of quanta (E) = hv
- $= 6.626 \times 10^{-34} \times 4.87 \times 10^{14} = 3.227 \times 10^{-19} \text{ J}$
- (d) Number of quanta in 2 J of energy

$$=\frac{2}{3.227\times10^{-19}}=6.2\times10^{18}$$
 photons

30. Energy of photon,
$$E = \frac{hc}{\lambda}$$

Here, $h = 6.626 \times 10^{-34}$ J s, $c = 3 \times 10^8$ m s⁻¹ $\lambda = 600 \text{ nm} = 600 \times 10^{-9} \text{ m} = 6 \times 10^{-7} \text{ m}$ $E = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{6 \times 10^{-7}} = 3.31 \times 10^{-19} \text{ J}$ Total energy received = 3.15×10^{-18} J •:• Number of photons received = $\frac{3.15 \times 10^{-18}}{3.31 \times 10^{-19}} = 9.52 \approx 10$ **31.** Frequency (v) = $\frac{1}{2 \times 10^{-9}} = 0.5 \times 10^9 \text{ sec}^{-1}$ Energy of the source $= n \times hv$ $= 2.5 \times 10^{15} \times 6.626 \times 10^{-34} \times 0.5 \times 10^{9} = 8.28 \times 10^{-10}$ J **32.** Step I : Wavelength (λ) = 589 nm = 589 × 10⁻⁹ m Frequency (v) = $\frac{c}{\lambda} = \frac{3 \times 10^8}{589 \times 10^{-9}}$ $= 5.093 \times 10^{14}$ cycles per sec Step II : Wavelength (λ) = 589.6 nm = 589.6 \times 10⁻⁹ m :. $v = \frac{c}{\lambda} = \frac{3 \times 10^8}{589.6 \times 10^{-9}} = 5.088 \times 10^{14}$ cycles per sec Energy difference between two excited states, $\Delta E = 6.626 \times 10^{-34} (5.093 - 5.088) 10^{14}$ $= 6.626 \times 10^{-34} \times 5 \times 10^{-3} \times 10^{14} = 3.31 \times 10^{-22}$ J **33.** (a) Work function $= hv_0 = 1.9 \text{ eV}$ $= 1.9 \times 1.602 \times 10^{-19} \text{ J} = 3.04 \times 10^{-19} \text{ J}$ Threshold frequency, $(\upsilon_0) = \frac{3.04 \times 10^{-19}}{6.626 \times 10^{-34}} = 4.59 \times 10^{14} \text{ sec}^{-1}$ (b) Threshold wavelength, $(\lambda_0) = \frac{c}{\nu_0} = \frac{3 \times 10^8}{4.59 \times 10^{14}} = 6.54 \times 10^{-7} \text{ m}$ or 654×10^{-9} m or 654 nm (c) Energy of light, $E = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{500 \times 10^{-9}} = 3.98 \times 10^{-19} \text{ J}$ Kinetic energy of ejected electron $= 3.98 \times 10^{-19} - 3.04 \times 10^{-19} = 9.4 \times 10^{-20} \text{ J}$ 1

$$\therefore \quad K.E. = \frac{1}{2} mv^2$$

$$v = \sqrt{\frac{2 K.E.}{m}} = \sqrt{\frac{2 \times 9.4 \times 10^{-20}}{9.1 \times 10^{-31}}} = 4.54 \times 10^5 \text{ m s}^{-1}$$

34. Let the threshold wavelength = λ_0 nm = $\lambda_0 \times 10^{-9}$ m then $hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right) = \frac{1}{2}mv^2$

Substituting the given three experiments,

$$\frac{hc}{10^{-9}} \left(\frac{1}{500} - \frac{1}{\lambda_0} \right) = \frac{1}{2} m (2.55 \times 10^5)^2 \qquad \dots (i)$$

$$\frac{hc}{10^{-9}} \left(\frac{1}{450} - \frac{1}{\lambda_0} \right) = \frac{1}{2} m (4.35 \times 10^5)^2 \qquad \dots (ii)$$

$$\frac{hc}{10^{-9}} \left(\frac{1}{400} - \frac{1}{\lambda_0} \right) = \frac{1}{2} m (5.20 \times 10^5)^2 \qquad \dots (iii)$$

Dividing equation (ii) by equation (i) we get,

$$\frac{\lambda_0 - 450}{450\lambda_0} \times \frac{500\lambda_0}{\lambda_0 - 500} = \left(\frac{4.35}{2.55}\right)^2$$

or $\frac{\lambda_0 - 450}{\lambda_0 - 500} = \frac{450}{500} \times \left(\frac{4.35}{2.55}\right)^2$
or $\frac{\lambda_0 - 450}{\lambda_0 - 500} = \frac{9}{10} \times \frac{18.92}{6.50}$ or $\frac{\lambda_0 - 450}{\lambda_0 - 500} = 2.62$
or $\lambda_0 - 450 = 2.62\lambda_0 - 1310$
 $\lambda_0 = 530.86$ nm ≈ 531 nm

Putting this in equation (iii), we get

$$\frac{h \times 3 \times 10^8}{10^{-9}} \left(\frac{1}{400} - \frac{1}{531} \right) = \frac{1}{2} (9.1 \times 10^{-31}) (5.20 \times 10^5)^2$$

$$h \times 3 \times 10^{17} \left(\frac{131}{531 \times 400} \right) = \frac{1}{2} \times 27.04 \times 10^{10} \times 9.1 \times 10^{-31}$$

$$h = 6.66 \times 10^{-34} \text{ Js}$$
35. Energy of incident radiation (*E*) = $\frac{hc}{\lambda}$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{256.7 \times 10^{-9}} = 0.0774 \times 10^{-17}$$

$$= 7.74 \times 10^{-19} \text{ J}$$

$$= 4.83 \text{ eV} \qquad [\because 1.602 \times 10^{-19} \text{ J} = 1 \text{ eV}]$$
The potential applied gives the kinetic energy to the electron.
Hence, *K.E.* of electron = 0.35 eV

$$\therefore \text{ Work function = (4.83 - 0.35) eV = 4.48 eV}$$
36. Photon of wavelength = 150 pm = 150 \times 10^{-12} m

Energy of photon (E) =
$$\frac{hc}{\lambda}$$

= $\frac{6.626 \times 10^{-34} \times 3 \times 10^8}{150 \times 10^{-12}}$
= 0.1325 × 10⁻¹⁴ = 13.25 × 10⁻¹⁶ J

MtG100PERCENT Chemistry Class-11

Energy of the ejected electron $= \frac{1}{2}mv^2$ $= \frac{1}{2} \times 9.11 \times 10^{-31} \times (1.5 \times 10^7)^2 = 1.025 \times 10^{-16} \text{ J}$ Energy with which the electron is bound to the nucleus $= (13.25 \times 10^{-16} - 1.025 \times 10^{-16}) \text{ J} = 12.225 \times 10^{-16} \text{ J}$ $= \frac{12.225 \times 10^{-16}}{1.602 \times 10^{-19}} = 7.63 \times 10^3 \text{ eV}$ $[\because 1.602 \times 10^{-19} \text{ J} = 1 \text{ eV}]$ **37.** $\because \lambda = 1285 \text{ nm} = 1285 \times 10^{-9} \text{ m}$ $[\because 1 \text{ nm} = 10^{-9} \text{ m}]$ $\therefore \quad \upsilon = \frac{c}{\lambda} = \frac{3 \times 10^8}{1285 \times 10^{-9}} = 2.33 \times 10^{14} \text{ sec}^{-1}$ According to question, $\upsilon = 3.29 \times 10^{15} \left(\frac{1}{3^2} - \frac{1}{n^2}\right)$ $\therefore \quad 2.33 \times 10^{14} = 3.29 \times 10^{15} \left(\frac{1}{9} - \frac{1}{n^2}\right)$ $\therefore \quad \frac{2.33 \times 10^{14}}{3.29 \times 10^{15}} = \frac{1}{9} - \frac{1}{n^2} \text{ or } 0.0708 = \frac{1}{9} - \frac{1}{n^2}$ or $\quad \frac{1}{n^2} = \frac{1}{9} - 0.0708 \text{ or } \frac{1}{n^2} = \frac{1 - 0.64}{9}$ $\therefore \quad n^2 = \frac{9}{0.36} = \frac{900}{36} = 25 \implies n = \sqrt{25} = 5$

 $\lambda = 1.285 \times 10^{-6}$ m i.e., of order 10^{-6} m which lies in the infrared region.

38. Radius of *n*th orbit of H-like particles

$$= \frac{0.529 \times n^2}{Z} \text{ Å} = \frac{52.9 \times n^2}{Z} \text{ pm}$$

Radius (r₁) = 1.3225 nm = 1322.5 pm = $\frac{52.9 n_1^2}{Z}$

Radius (
$$r_2$$
) = 211.6 pm = $\frac{52.9 n_2^2}{Z}$

$$\therefore \quad \frac{r_1}{r_2} = \frac{1322.5}{211.6} = \frac{n_1^2}{n_2^2}$$

$$\Rightarrow \quad 6.25 = \frac{n_1^2}{n_2^2} \Rightarrow \left(\frac{n_1}{n_2}\right)^2 = 6.25 \Rightarrow \frac{n_1}{n_2} = \sqrt{6.25} = 2.5$$

 \therefore $n_2 = 2, n_1 = 5$ thus, the transition is from 5th orbit to 2nd orbit. It belongs to Balmer series.

$$\overline{\upsilon} = 1.097 \times 10^7 \left(\frac{1}{2^2} - \frac{1}{5^2}\right)$$
$$= 1.097 \times 10^7 \left(\frac{1}{4} - \frac{1}{25}\right) = 1.097 \times 10^7 \times \frac{21}{100}$$

$$\lambda = \frac{1}{\overline{\upsilon}} = \frac{100}{1.097 \times 21 \times 10^7} \, \text{m} = 4.34 \times 10^{-7} \, \text{m}$$

 $= 434 \times 10^{-9} \text{ m} = 434 \text{ nm}$

Thus, it lies in the visible region.

Topic 3

1. Wavelength of electron $(\lambda) = \frac{h}{mv}$

where, $h = 6.626 \times 10^{-34}$ J s (Planck's constant), m = mass of electron, v = velocity of electron

$$\therefore \quad \lambda = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.05 \times 10^7} = 3.55 \times 10^{-11} \text{ m}$$
2. $K.E. = \frac{1}{2}mv^2$

$$v = \left(\frac{2 \times 3 \times 10^{-25}}{9.1 \times 10^{-31}}\right)^{1/2} = 812 \text{ m s}^{-1}$$
Now, $\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 812}$

$$= 8.967 \times 10^{-7} \text{ m} = 8967 \text{ Å}$$

3. According to Bohr's theory, the angular momentum of an electron of mass (*m*) moving with speed (*v*) in an orbit of radius

(r) is an integral multiple of $\frac{h}{2\pi}$.

$$mvr = n \frac{h}{2\pi}$$
 or $2\pi r = n \frac{h}{mv}$...(1)

But according to de Broglie equation,

$$\lambda = \frac{h}{mv} \qquad \dots (2)$$

From equations (1) and (2), we get $2\pi r = n\lambda$, *i.e.*, an integral multiple of the de Broglie wavelength.

4. According to de Broglie equation, $\lambda = \frac{h}{mv}$ where h = Planck's constant = 6.626 × 10⁻³⁴ J s m = mass of particles = 9.1 × 10⁻³¹ kg, v = velocity = 1.6 × 10⁶ m/s $\therefore \quad \lambda = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 1.6 \times 10^{6}} = 0.455 \times 10^{-9} m$ = 455 × 10⁻¹² m = 455 pm [\because 1 pm = 10⁻¹² m] 5. $v = \frac{h}{m\lambda}$ [$\because \lambda = \frac{h}{mv}$]

$$= \frac{6.626 \times 10^{-34}}{1.675 \times 10^{-27} \times 800 \times 10^{-12}} = 4.94 \times 10^{2} \text{ m s}^{-1}$$

$$\left[\because m = \text{mass of neutron} = 1.675 \times 10^{-27} \text{ kg} \right]$$
6. We know that, $\lambda = \frac{h}{mv}$
where, $h = 6.626 \times 10^{-34} \text{ J s}$,
 $m = \text{mass of electron} = 9.1 \times 10^{-31} \text{ kg}$
 $v = 2.19 \times 10^{6} \text{ m/s}$

$$\therefore \lambda = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.19 \times 10^{6}} = 0.332 \times 10^{-9} \text{ m}$$

$$= 332 \times 10^{-12} \text{ m} = 332 \text{ pm} \qquad [\because 1 \text{ pm} = 10^{-12} \text{ m}]$$
7. We know that $\lambda = \frac{h}{mv}$
where $h = 6.626 \times 10^{-34} \text{ J s}$, $m = 0.1 \text{ kg}$, $v = 4.37 \times 10^{5} \text{ m s}^{-1}$

$$\therefore \lambda = \frac{6.626 \times 10^{-34}}{0.1 \times 4.37 \times 10^{5}} = 15.16 \times 10^{-39} \text{ m}$$

$$= 1.516 \times 10^{-38} \text{ m}$$
8. According to uncertainty principle, $\Delta x \times \Delta p = \frac{h}{4\pi}$
where, $\Delta x = \pm 0.002 \text{ nm} = \pm 0.002 \times 10^{-9} \text{ m}$, $\Delta p = 2.63 \times 10^{-23} \text{ kg m/sc}$
Actual momentum $= \frac{h}{4\pi m} \cdot \frac{1}{0.05}$

$$= \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 5 \times 10^{-11}} = 1.05 \times 10^{-24} \text{ kg m/s}$$
This value cannot be defined as the actual magnitude of the momentum, which is impossible.
9. (i) The respective electronic configurations are :

(a) $H^- \to 1s^2$ (b) $Na^+ \to 1s^2 2s^2 2p^6$ (c) $O^{2-} \to 1s^2 2s^2 2p^6$ (d) $F^- \to 1s^2 2s^2 2p^6$ (ii) (a) $3s^1 \to 1s^2 2s^2 2p^6 3s^1$

 \therefore The atomic number of element = 11

(b)
$$2p^3 \rightarrow 1s^2 2s^2 2p^3$$

 \therefore The atomic number of element = 7

(c)
$$3p^5 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$$

 \therefore The atomic number of element = 17

(iii) (a) [He] $2s^1 \rightarrow$ Lithium, Li (b) [Ne] $3s^2 3p^3 \rightarrow$ Phosphorus, P (c) [Ar] $4s^23d^1 \rightarrow$ Scandium, Sc **10.** For g-orbital, l = 4. For a [:: /=0 's' orbital]value of *n*, possible values of *l* are l=1 'p' orbital 0 to *n* − 1. l = 2 'd' orbital Thus, $l = 4 = n - 1 \Longrightarrow n = 5$ l = 3 'f' orbital The lowest value of *n* that allows l = 4 'g' orbital *g*-orbitals to exist is 5. **11.** For 3*d*-orbital \therefore n = 31 = 2 $m_1 = -1 \text{ to } + 1$ = -2 to + 2= -2, -1, 0, +1, +2**12.** Number of electrons = 29, number of neutrons = 35(i) We know that Z = e = p: *e* = 29 $\therefore p = 29$ (ii) Electronic configuration : $1s^22s^22p^63s^23p^63d^{10}4s^1$ **13.** (i) When *n* = 3, *l* = 0, 1, 2 When $l = 0, m_l = 0$. When $l = 1, m_l = -1, 0, +1$. When $l = 2, m_l = -2, -1, 0, +1, +2$. (ii) For 3*d*-orbital $l = 2, m_l = -2, -1, 0, +1, +2$ (iii) For a particular value of *n*, the allowed values of *l* are 0 to n-1 only. Hence, 2s and 2p are the only possible orbitals. **14.** (a) 1s (b) 3p (c) 4d (d) 4f **15.** (a) Not possible because $n \neq 0$ (c) Not possible because when n = 1, l = 0(e) Not possible because when n = 3, l = 0, 1, 2, and not equal to 3. **16.** (a) Total number of electrons in n = 4 is $2n^2 = 2(4)^2 = 32$ But half of these electrons have $m_s = -1/2$ \therefore Number of electrons = 16 (b) Number of electrons = 2[:: 3s subshell] **17.** 1. 4d(n + l = 4 + 2 = 6)2. 3d(n + l = 3 + 2 = 5) 3. 4p(n + l = 4 + 1 = 5)4. 3d(n+l=3+2=5)5. 3p(n + l = 3 + 1 = 4)

6. 4p(n + l = 4 + 1 = 5)

Greater the value of n + l, higher will be the energy of orbital. If two orbitals have same n + l value then the orbital having higher n value will possess higher energy.

Therefore, the required order is :

MtG100PERCENT Chemistry Class-11

 $[\because l = 0 \text{ to } n - 1]$

18. The electron in 4*p* orbital experiences lowest effective nuclear charge because it is farthest from the nucleus.

19. Orbital closer to the nucleus will experience larger effective nuclear charge.

(i) 2s (ii) 4d (iii) 3p

20. Si has nuclear charge, Z = 14 while Al has Z = 13. Thus, the electrons of 3p-orbital of Si will experience more effective nuclear charge from the nucleus.

21. (a) $_{15}P \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^3$

Number of unpaired electrons = 3

(b)
$${}_{14}\text{Si} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^2$$

Number of unpaired electrons = 2

(c) ${}_{24}Cr \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ Number of unpaired electrons = 6

(d) ${}_{26}\text{Fe} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ Number of unpaired electrons = 4

(e) ${}_{36}$ Kr \rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ Number of unpaired electrons = zero

- \therefore Number of sub-shells = 4
- (b) Number of electrons having $m_s = -1/2 = \frac{32}{2} = 16$ [:: Maximum number of electrons = $2n^2 = 2 \times 4^2 = 32$]

8

MtG BEST SELLING BOOKS FOR CLASS 11

Visit www.mtg.in for complete information