Thermodynamics

ANSWERS

Topic 1

- **(b)**: State function is a property of the system whose value depends only upon the state of the system and is independent of the path or the manner by which the state is reached.
- 2. (c): Adiabatic system does not exchange heat with the surroundings.
- Heat absorbed by the system (q) = 701 JWork done by the system (w) = -394 J According to first law of thermodynamics,

$$\Delta U = q + w = 701 + (-394) = 701 - 394 = 307 \text{ J}$$

- 4. Mass of AI = 60 gRise in temperature, $\Delta T = 55 - 35 = 20$ °C Molar heat capacity of AI = $24 \text{ J mol}^{-1} \text{ K}^{-1}$
- Specific heat capacity of AI = $\frac{24}{27}$ J g⁻¹ K⁻¹
- \therefore Energy required = $m \times c \times \Delta T$ $=60 \times \frac{24}{27} \times 20 = 1066.67 \text{ J} \approx 1.07 \text{ kJ}$

Topic 2

- **(b)**: By convention, the standard enthalpy of formation of every element in its standard state is zero.
- 2. **(c)** : $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(f)}$ $\Delta n_a = 1 - 3 = -2$ $\Delta \vec{H^{\circ}} = \Delta U^{\circ} + \Delta n_g RT = -X - 2RT$
- $\therefore \Delta H^{\circ} < \Delta U^{\circ}$
- 3. **(a)**: (1) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$; $\Delta H = -890.3 \text{ kJ mol}^{-1}$
- (2) $C + O_2 \rightarrow CO_2$; $\Delta H = -393.5 \text{ kJ mol}^{-1}$
- (3) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$; $\Delta H = -285.8 \text{ kJ mol}^{-1}$
- or $2H_2 + O_2 \rightarrow 2H_2O$; $\Delta H = -571.6 \text{ kJ mol}^{-1}$ Add equations (2) and (3) and subtract equation (1) we get, $C + 2H_2 \rightarrow CH_4$

$$\Delta H = -393.5 - 571.6 + 890.3 = -74.8 \text{ kJ mol}^{-1}$$

Enthalpy of formation of CH_4 is -74.8 kJ mol⁻¹.

4. $NH_2CN_{(s)} + \frac{3}{2}O_{2(q)} \rightarrow N_{2(q)} + CO_{2(q)} + H_2O_{(l)}$

 $\Delta U = -742.7 \text{ kJ/mol}$

$$\Delta n_g = n_P - n_R = 2 - \frac{3}{2} = +\frac{1}{2}$$
, $R = \frac{8.314}{1000}$ kJ K⁻¹ mol⁻¹

$$\Delta H = \Delta U + \Delta n_g RT = -742.7 + \frac{1}{2} \times \frac{8.314}{1000} \times 298$$

= -742.7 + 1.2 = -741.5 kJ/mol

5. The enthalpy change on freezing from 10°C to -10°C may be expressed as

Liquid (10°C)
$$\xrightarrow{\Delta H_1}$$
 Liquid (0°C) $\xrightarrow{\Delta H_2}$ Solid (0°C) $\xrightarrow{\Delta H_3}$ Solid (-10°C)

$$\Delta H_1 = nC_P[H_2O_{(f)}] \times \Delta T = 1 \times 75.3 \text{ J mol}^{-1} \text{ K}^{-1} \times (-10)$$

= $-753 \text{ J mol}^{-1} = -0.753 \text{ kJ mol}^{-1}$

$$\Delta H_2 = n(-\Delta_{fus} H) = -1 \times 6.03 = -6.03 \text{ kJ mol}^{-1}$$

 $\Delta H_3 = nC_P[H_2O_{(s)}] \times \Delta T = -1 \times 36.8 \times 10 = -368 \text{ J mol}^{-1}$
= -0.368 kJ mol⁻¹

$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$$
= -0.753 - 6.03 - 0.368 kJ mol⁻¹ = -7.151 kJ mol⁻¹

- **6.** $C + O_2 \rightarrow CO_2$; $\Delta H = -393.5 \text{ kJ}$
- : When 44 g of CO₂ is formed from carbon and dioxygen gas, heat released = 393.5 kJ
- \therefore When 35.2 g of CO₂ is formed from carbon and dioxygen gas, heat released

$$=\frac{393.5\times35.2}{44}=\frac{13851.2}{44}=314.8 \text{ kJ}$$

Thus, $\Delta H = -314.8 \text{ kJ}$

7.
$$N_2O_{4(g)} + 3CO_{(g)} \rightarrow N_2O_{(g)} + 3CO_{2(g)}$$

 $\Delta_r H = \{\Delta_f H[N_2O_{(g)}] + 3\Delta_f H[CO_{2(g)}]\} - \{\Delta_f H[N_2O_{4(g)}]\}$
 $+ 3\Delta_r H[CO_{(g)}]\}$
 $= 81 + 3 \times (-393) - \{9.7 + 3(-110)\}$
 $= 81 - 1179 - 9.7 + 330 = -777.7 \text{ kJ mol}^{-1}$

- **8.** $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}; \Delta_p H^\circ = -92.4 \text{ kJ mol}^{-1}$
- \therefore Standard enthalpy of formation of NH_{3(q)}

$$=\frac{-92.4}{2}=-46.2 \text{ kJ/mol}$$

9. The given thermochemical equations are

(1)
$$CH_3OH_{(1)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(1)};$$

$$\Delta_r H^\circ = -726 \text{ kJ mol}^{-1}$$

(2)
$$C_{\text{(graphite)}} + O_{2(g)} \rightarrow CO_{2(g)}$$
; $\Delta_c H^{\circ} = -393 \text{ kJ mol}^{-1}$

(3)
$$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(f)}; \Delta_f H^\circ = -286 \text{ kJ mol}^{-1}$$

The required thermochemical equation is

$$C_{(s)} + 2H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow CH_3OH_{(l)}; \Delta H = ?$$

 $2 \times \text{eqn.}$ (3) + eqn. (2) – eqn. (1) gives the desired equation.

$$\Delta H = (-286 \times 2) + (-393) - (-726)$$

= -572 - 393 + 726 = -239 kJ

$$\therefore$$
 $\Delta_f H^\circ$ for $CH_3OH_{(f)} = -239 \text{ kJ mol}^{-1}$

10. Given:

(i)
$$\operatorname{CCI}_{4(I)} \to \operatorname{CCI}_{4(g)}$$
, $\Delta_{vap} H^{\circ} = 30.5 \; \mathrm{kJ} \; \mathrm{mol}^{-1}$

(ii)
$$C_{(s)} + 2Cl_{2(g)} \rightarrow CCl_{4(f)}, \Delta_f H^o = -135.5 \text{ kJ mol}^{-1}$$

(iii)
$$C_{(s)} \rightarrow C_{(g)}$$
, $\Delta_{\partial} H^{\circ} = 715.0 \text{ kJ mol}^{-1}$

(iv)
$$Cl_{2(g)} \rightarrow 2Cl_{(g)}$$
, $\Delta_a H^\circ = 242 \text{ kJ mol}^{-1}$

Required equation is:

$$CCl_{4(g)} \rightarrow C_{(g)} + 4Cl_{(g)}$$
; $\Delta H = ?$

From Hess's law,

eqn.(iii) + 2 \times eqn.(iv) – eqn.(i) – eqn.(ii) gives required equation :

$$\Delta H = 715.0 + 2(242) - 30.5 - (-135.5) = 1304 \text{ kJ mol}^{-1}$$

Bond enthalpy of C – Cl in
$$CCl_4$$
 (average value) = $\frac{1304}{4}$

$$= 326 \text{ kJ mol}^{-1}$$

Topic 3

1. (d) :
$$A + B \rightarrow C + D + q$$
, $\Delta S = +ve$

Here,
$$\Delta H = -ve$$

$$\Delta G = \Delta H - T \Delta S$$

For reaction to be spontaneous, ΔG should be —ve.

As $\Delta H = -\text{ve}$ and ΔS is +ve, ΔG will be -ve at any temperature.

- **2.** When energy factor has no role to play, for the process to be spontaneous ΔS must be +ve *i.e.*, $\Delta S > 0$.
- **3.** According to Gibbs—Helmholtz equation,

$$\Delta G = \Delta H - T \Delta S$$
.

At equilibrium, $\Delta G = 0$

$$T = \frac{\Delta H}{\Delta S} = \frac{400}{0.2} = \frac{4000}{2} = 2000 \text{ K}$$

Thus, the reaction will be spontaneous at temperature above 2000 K. [: Above 2000 K, $\Delta G = -\text{ve}$]

- **4.** ΔH is negative because bond energy is released and ΔS is negative because there is less randomness among the molecules than among the atoms.
- 5. $\Delta H^{\circ} = \Delta U^{\circ} + \Delta n_{\alpha} RT$

$$\Delta U^{\circ} = -10.5 \text{ kJ mol}^{-1}$$
, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, $T = 298 \text{ K}$

$$\Delta n_a = 2 - (2 + 1) = -1$$

$$\Delta H^{\circ} = -10.5 - (1) \times 8.314 \times 10^{-3} \times 298$$
$$= -10.5 - 2.48 = -12.98 \text{ kJ mol}^{-1}$$

Now
$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$=-12.98-298\times(-44.1\times10^{-3})$$

$$= -12.98 + 13.14 = 0.16 \text{ kJ mol}^{-1}$$

Since ΔG° is positive hence, the reaction is non spontaneous.

- 6. We know that $\Delta G^{\circ} = -2.303RT \log K$ = -2.303 × 8.314 × 300 × log10 = -5744.14 J/mol
- 7. $\Delta H_f^{\circ}[H_2O_{(f)}] = -286 \text{ kJ/mol}$
- \therefore $q_{\text{surroundings}} = +286 \text{ kJ/mol}$

$$\Delta S_{\text{(surr)}} = \frac{q}{298} = \frac{286 \times 1000}{298} = 959.73 \text{ J K}^{-1} \text{ mol}^{-1}$$

MtG BEST SELLING BOOKS FOR CLASS 11

