ANSWERS

1. (i) (c)
(ii) (a) : $\mathrm{RaSO}_{4} \rightleftharpoons \mathrm{Ra}^{2+}+\mathrm{SO}_{4}^{2-}$
$K_{S p}=\left[\mathrm{Ra}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
Concentration of SO_{4}^{2-} from $\mathrm{Na}_{2} \mathrm{SO}_{4}=0.10 \mathrm{M}$
$\mathrm{Ra}^{2+}=\frac{4 \times 10^{-11}}{0.10}=4 \times 10^{-10} \mathrm{M}$
(iii) (a) : $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}^{2-}$
$\mathrm{Ag}^{+}=1.5 \times 10^{-4} \mathrm{M}$
$\mathrm{CrO}_{4}^{2-}=0.75 \times 10^{-4} \mathrm{M}\left(\frac{1}{2}\right.$ of $\left.\mathrm{Ag}^{+}\right)$
$K_{S p}=\left(1.5 \times 10^{-4}\right)^{2} \times\left(0.75 \times 10^{-4}\right)=1.687 \times 10^{-12}$
(iv) (a) : $K_{S p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
[Cl'] $=\mathrm{NaCl}=0.05 \mathrm{M}$
$\mathrm{Ag}^{+}=\frac{1.5 \times 10^{-10}}{0.05}=3 \times 10^{-9} \mathrm{M}$
$\left[\mathrm{Ag}^{+}\right]=$solubility $=3 \times 10^{-9} \mathrm{M}$
(v) (a): $M X_{4} \rightleftharpoons \underset{s}{M^{+}}+\underset{4 s}{4 X^{-}}$
$K_{s p}=s \times(4 s)^{4}=256 s^{5}$
2. Equilibrium constant
3. Homogeneous
4. Forward
5. HA
6. Acidic
$\begin{array}{lcc}\text { 7. }(\mathbf{d}): & \mathrm{PCl}_{5} \rightleftharpoons & \mathrm{PCl}_{3} \\ \text { Initial moles } & 1 & 0 \\ \text { Equilibrium moles } & 1-\alpha & \alpha \\ \mathrm{Cl}_{2} \\ & \alpha\end{array}$
Total moles $=1-\alpha+\alpha+\alpha=1+\alpha$
Total pressure $=P$
$\therefore \quad p_{\mathrm{PC}_{5}}=\frac{(1-\alpha) P}{(1+\alpha)} ; p_{\mathrm{PCl}_{3}}=\frac{\alpha \cdot P}{1+\alpha} ; p_{\mathrm{Cl}_{2}}=\frac{\alpha \cdot P}{1+\alpha}$
Now, $K_{p}=\frac{p_{\mathrm{PC}_{1}} \cdot P_{\mathrm{Cl}_{2}}}{p_{\mathrm{PCl}_{5}}}=\frac{\alpha^{2} \cdot P^{2}}{(1+\alpha)(1-\alpha) P}=\frac{\alpha^{2} P}{1-\alpha^{2}}$
7. (a) : $K_{p}=K_{c}(R T)^{\Delta n_{g}}$, Here $\Delta n_{g}=1$
$K_{p}=K_{c}(R T) \therefore K_{p}>K_{c}$
(b) : $Q=\frac{\left[P_{2(g)}\right]^{2}}{\left[\mathrm{P}_{4(g)}\right]}=\frac{\left(\frac{2}{2}\right)^{2}}{(3 / 2)}=\frac{2}{3}$
8. (a) : $\mathrm{p} K_{\mathrm{a}}$ of acid $A=4 ; \mathrm{p} K_{\mathrm{a}}$ of acid $B=5$

We know that $\mathrm{p} K_{a}=-\log K_{a}$
$\therefore \quad$ For acid $A, K_{a}=10^{-4}$; For acid $B_{1} K_{a}=10^{-5}$
Hence, A is ten times stronger than that of B.
10. (a): $\mathrm{HX}_{(a q)} \rightleftharpoons \mathrm{H}_{(a q)}^{+}+X_{(a q)}^{-}$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
At a given temperature, K_{a} is a measure of the strength of the acid. Greater the value of K_{a}, more is the dissociation of HX possible.
11. (c) : Value of equilibrium constant will remain constant.
12. (a)
13. (d) : pH of water decreases with increase in temperature.
14. (c) : $K_{S p}$ of $\mathrm{AgCl}>K_{S p}$ of AgBr .

For the precipitation to occur, its ionic product should exceed solubility product.
15. (i) By convention, concentration of solids is taken unity.
$\therefore \quad K_{p}=p_{\mathrm{CO}_{2(g)}} ; K_{c}=\left[\mathrm{CO}_{2}\right]$
(ii) $K_{p}=p_{\mathrm{NH}_{3}} \times p_{\mathrm{H}_{2} \mathrm{~S}}$
$K_{c}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$
16. $\Delta n_{g}=2-4=-2$
$K_{p}=K_{c}(R T)^{\Delta n_{g}}$
$=6.02 \times 10^{-2} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \times\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 773 \mathrm{~K}\right)^{-2}$
$=1.5 \times 10^{-5} \mathrm{~atm}^{-2}$
17. For equation, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

$$
\begin{equation*}
K_{1}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \tag{i}
\end{equation*}
$$

and for $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$

$$
\begin{equation*}
K_{2}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]^{3 / 2}} \tag{ii}
\end{equation*}
$$

or, $\left(K_{2}\right)^{2}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
From (i) and (iii),
$K_{1}=\left(K_{2}\right)^{2}$ or $\sqrt{K_{1}}=K_{2}$
18. (i) NH_{3} donates a lone pair, hence it acts as a Lewis base NH_{3} combines with proton $\left(\mathrm{NH}_{3}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}\right)$.
Thus, it acts as a Bronsted base also.
(ii) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

OR
$\mathrm{pH}=5$ i.e., $\left[\mathrm{H}^{+}\right]=10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
On dilution by 100 times $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{~mol} \mathrm{~L}$
For a very dilute solution,
Total $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$from acid $]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$ions from water $]$

$$
=10^{-7}+10^{-7}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2 \times 10^{-7}\right)=7-\log 2$

$$
=7-0.3010=6.6990
$$

19. (i) $\left[\mathrm{H}^{+}\right]=\sqrt{C K_{a}}=\sqrt{0.01 \times 4 \times 10^{-8}}$

$$
=2 \times 10^{-5} \mathrm{M}
$$

(ii) $K_{\text {sp }(\mathrm{Agbr})}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]$

$$
\left[\mathrm{Br}^{-}\right]=\frac{K_{S p}}{\left[\mathrm{Ag}^{+}\right]}=\frac{4 \times 10^{-13}}{1 \times 10^{-6}}=4 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}
$$

20. For the reaction, $a A+b B \rightleftharpoons c C+d D$

$$
K_{p}=\frac{p_{C}^{C} \times p_{D}^{d}}{p_{A}^{a} \times p_{B}^{b}}
$$

As per definition $p_{i}=x_{i} P$
Where x_{i} is the mole fraction of the component i, P is the total pressure of the system.
Then, $K_{P}=\frac{\left(x_{C} P\right)^{c} \times\left(x_{D} P\right)^{d}}{\left(x_{A} P\right)^{a} \times\left(x_{B} P\right)^{b}}$

$$
=\frac{x_{C}^{c} \cdot x_{D}^{d}}{x_{A}^{a} \cdot x_{B}^{b}} \times P^{(c+d)-(a+b)}=K_{x} P^{\Delta r_{g}}
$$

Thus, $K_{p}=K_{x} P^{\Delta n_{g}}$

OR

$\Delta G^{\circ}=-2.303 R T \log K$
or $\log K=\frac{-\Delta G^{\circ}}{2.303 R T}$
$\Delta G^{\circ}=-8.1 \mathrm{~kJ} \mathrm{~mol}^{-1}, T=1000 \mathrm{~K}$
$R=8.314 \times 10^{-3} \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\therefore \quad \log K=-\frac{-8.1}{2.303 \times 8.314 \times 10^{-3} \times 1000}=0.423$
$\Rightarrow \quad K=2.64$
$\begin{array}{ll}\text { 21. } & \mathrm{N}_{2} \mathrm{O}_{4(g)} \\ \text { Initial } \\ 1 \mathrm{~mol} \\ \text { Equilibrium } \\ (1-0.2) \mathrm{mol}\end{array} \underset{2}{2 \times 2 \mathrm{NO}_{2(g)}} \begin{aligned} & 0 \\ & 2 \times 0.2 \mathrm{~mol}=0.4 \mathrm{~mol}\end{aligned}$

So, $n_{\text {total }}=1-0.2+0.4=1.2 \mathrm{~mol}$
Then, $P_{\text {total }} V=1.2 \times R \times 600$
For $\mathrm{N}_{2} \mathrm{O}_{4}$ at $300 \mathrm{~K}, 1 \times V=1 \times R \times 300$
From the above equation, $P_{\text {total }}=\frac{1.2 \times 600}{300}=2.4 \mathrm{~atm}$
22. pH of solution $A=6$
$\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
pH of solution $B=4$
$\left[\mathrm{H}^{+}\right]=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
On mixing one litre of each solution
Total volume $=1 \mathrm{~L}+1 \mathrm{~L}=2 \mathrm{~L}$
Total amount of H^{+}in 2 L solution formed by mixing solutions
A and $B=\left(10^{-6}+10^{-4}\right) \mathrm{mol}$
Total $\left[\mathrm{H}^{+}\right]=\frac{10^{-4}(1+0.01)}{2}=\frac{1.01 \times 10^{-4}}{2}$

$$
\begin{aligned}
& =5 \times 10^{-5} \mathrm{~mol} \mathrm{~L} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]=-\log \left(5 \times 10^{-5}\right) \\
& =-\log 5-(-5 \log 10)=-\log 5+5 \\
& =5-\log 5=5-0.6990=4.3010=4.3
\end{aligned}
$$

23. (a) $K_{h}=\frac{K_{w}}{K_{b}}=\frac{10^{-14}}{1.7 \times 10^{-6}}=5.88 \times 10^{-9}$
(b) $h=\sqrt{\frac{K_{h}}{C}} \Rightarrow h=\sqrt{\frac{5.88 \times 10^{-9}}{0.01}}$

$$
=7.67 \times 10^{-4}
$$

(c) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log C\right]$

$$
\begin{aligned}
& \mathrm{p} K_{w}=14 \\
& \mathrm{p} K_{b}=-\log K_{b}=-\log \left(1.7 \times 10^{-6}\right)=5.7695 \\
& \log C=\log 0.01=-2
\end{aligned}
$$

Thus,

$$
\mathrm{pH}=\frac{1}{2}[14-5.7695-(-2)]=5.115
$$

24. (i) Sugar is a covalent compound hence does not ionise in water. NaCl being ionic, ionises in water and produces Na^{+} and Cl^{-}ions, hence solution becomes conducting. Conductance increases with increase in concentration of salt due to increase in number of ions.
(ii) Greater is the ionization constant $\left(K_{b}\right)$ of a base, greater is the ionisation of the base.
Order of extent of ionization at equilibrium is dimethylamine $>$ ammonia $>$ pyridine $>$ urea. Dimethylamine is the strongest base due to maximum value of K_{b}.
25. (a) Ammonium formate is a salt of weak acid and weak base. Hence,

$$
\begin{aligned}
\mathrm{pH} & =7+\frac{1}{2} \mathrm{p} K_{a}-\frac{1}{2} \mathrm{p} K_{b}=7+\frac{1}{2} \times 3.8-\frac{1}{2} \times 4.8 \\
& =7+1.9-2.4=6.5
\end{aligned}
$$

(b) Neutral solution: $\mathrm{KCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}$

Acidic solution : $\mathrm{NH}_{4} \mathrm{NO}_{3}$
Basic solution: $\mathrm{KCN}, \mathrm{NaNO}_{3}$
26. (i) $\left[\mathrm{H}^{+}\right]=\sqrt{K_{a} \cdot C} ; \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(K_{a} \cdot C\right)^{1 / 2}$
or $\mathrm{pH}=-\log \left[1.8 \times 10^{-5} \times 0.1\right]^{1 / 2}$
or $\mathrm{pH}=2.8723$
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ being a strong acid dissociates completely.

$$
\underset{0.1}{\mathrm{H}_{2} \mathrm{SO}_{4}} \rightleftharpoons \underset{2 \times 0.1}{\rightleftharpoons} \underset{0.1}{2 \mathrm{H}^{+}}+\underset{4}{\mathrm{SO}_{4}^{2-}}
$$

$\left[\mathrm{H}^{+}\right]=0.2 \mathrm{~g}$ ion $/ \mathrm{L}$
$\therefore \quad \mathrm{pH}=-\log 0.2$
or $\mathrm{pH}=0.6990$
(iii) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(K_{b} \cdot C\right)^{1 / 2}$
$=-\log \left[1.8 \times 10^{-5} \times 10^{-1}\right]^{1 / 2}=2.8723$
$\therefore \quad \mathrm{pH}=14-\mathrm{pOH}=14-2.8723$
or $\mathrm{pH}=11.1277$

OR

(a) $\mathrm{HCl}+\mathrm{aq} . \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}{ }_{(a q)}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=4 \times 10^{-3} \mathrm{M}$,

$$
\mathrm{pH}=-\log \left(4 \times 10^{-3}\right)=2.39
$$

(b) $\mathrm{KOH}+a q . \rightarrow \mathrm{K}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=5 \times 10^{-3} \mathrm{M}$,
$\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{5 \times 10^{-3}}=2 \times 10^{-12} \mathrm{M}$

$$
\mathrm{pH}=-\log \left(2 \times 10^{-12}\right)=11.70
$$

(c) $\mathrm{HF}+\mathrm{aq} . \rightarrow \mathrm{H}^{+}+\mathrm{F}^{-}$,
$\therefore \quad\left[\mathrm{H}^{+}\right]=2 \times 10^{-3} \mathrm{M}$,
$\mathrm{pH}=-\log \left(2 \times 10^{-3}\right)=2.70$
27. When an equilibrium is subjected to any kind of stress (change in concentration, temperature or pressure) it shifts in a direction so as to undo the effect of stress.
(i) When H_{2} is added, the rate of forward reaction will increase.
(iii) Removal of CO will increase rate of backward reaction.
28. (i) Conjugate acid of $\mathrm{H}_{2} \mathrm{O}$ is $\mathrm{H}_{3} \mathrm{O}^{+}$.

Conjugate base of $\mathrm{H}_{2} \mathrm{O}$ is OH^{-}.
Conjugate acid of HSO_{4}^{-}is $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Conjugate base of HSO_{4}^{-}is SO_{4}^{2-}.
(ii) Limitation of Arrhenius theory:

According to Arrhenius concept, an acid must contain H^{+} and a base must contain OH^{-}groups. However, a number of substances like $\mathrm{CO}_{2}, \mathrm{SO}_{2}$ etc. are known to be acidic but do not contain any hydrogen and similarly substances like NH_{3}, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ etc. are known to be basic but do not contain any hydroxyl groups.
(iii) The equilibrium constant for the reaction :
$\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}$ is
$K_{c}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}$
$\left[\mathrm{N}_{2}\right]=3.0 \times 10^{-4} \mathrm{M},\left[\mathrm{O}_{2}\right]=4.2 \times 10^{-4} \mathrm{M}$,
$[\mathrm{NO}]=2.8 \times 10^{-4} \mathrm{M}$
$\therefore \quad K_{C}=\frac{\left(2.8 \times 10^{-4} \mathrm{M}\right)^{2}}{\left(3.0 \times 10^{-4} \mathrm{M}\right)\left(4.2 \times 10^{-4} \mathrm{M}\right)}=0.622$

OR

(a) $\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Ba}(\mathrm{OH})_{2}$ (Base)
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$ (Weak acid)
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{4}$ (Strong acid)
the decreasing order of basicity is
$\mathrm{BaO}>\mathrm{CO}_{2}>\mathrm{SO}_{3}$
(b) The reaction between BF_{3} and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ is

As BF_{3} accepts a pair of electrons hence BF_{3} is the Lewis acid.
(c) $\mathrm{KOH}=\frac{0.561}{56} \times \frac{1000}{200}=0.05 \mathrm{M}$

As, $\mathrm{KOH} \longrightarrow \mathrm{K}^{+}+\mathrm{OH}^{-}$
$\left[\mathrm{K}^{+}\right]=\left[\mathrm{OH}^{-}\right]=0.05 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=K_{W} / \mathrm{OH}^{-}=10^{-14} / 0.05$

$$
=10^{-14} /\left(5 \times 10^{-2}\right)=2.0 \times 10^{-13} \mathrm{M}
$$

$\mathrm{pH}=-\log 2 \times 10^{-13}=13-\log 2=12.69$
29. (i) $1.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ gives $\left[\mathrm{CO}_{3}^{2-}\right]=1.5 \mathrm{M}$
$K_{\text {sp }}$ for $\mathrm{Ag}_{2} \mathrm{CO}_{3}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]$

$$
\begin{aligned}
\therefore \quad & {\left[\mathrm{Ag}^{+}\right] }
\end{aligned}=\sqrt{\frac{K_{s p} \mathrm{for}_{\mathrm{Ag}_{2} \mathrm{CO}_{3}}}{\left[\mathrm{CO}_{3}^{2-}\right]}}=\sqrt{\frac{8.2 \times 10^{-12}}{1.5}}
$$

(ii) $\mathrm{Pb}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{OH}^{-}$

$$
\begin{aligned}
\therefore \quad K_{\text {Sp }} & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=s \times(2 s)^{2}=4 s^{3} \\
& =4 \times\left(6.7 \times 10^{-6}\right)^{3} \\
& =1.20 \times 10^{-15}
\end{aligned}
$$

In a solution with $\mathrm{pH}=8,\left[\mathrm{H}^{+}\right]=10^{-8}$
and $\left[\mathrm{OH}^{-}\right]=10^{-6}$
$\therefore \quad 1.2 \times 10^{-15}=\left[\mathrm{Pb}^{2+}\right] \times\left(10^{-6}\right)^{2}$
or $\quad\left[\mathrm{Pb}^{2+}\right]=\frac{1.2 \times 10^{-15}}{\left(10^{-6}\right)^{2}}=1.2 \times 10^{-3} \mathrm{M}$

OR

(a) The solutions which resist the change in their pH value on addition of small amount of acid or base are called buffer solutions.

These are generally a mixture of week acid and its conjugate base or weak base and its conjugate acid.
e.g., $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(b) $K_{c}^{\prime}=\frac{1}{K_{c}}=\frac{1}{4}=0.25$
$\begin{array}{lcc}(c) & I_{2(g)} & \rightleftharpoons 2 l_{(g)} \\ \text { Initial moles: } & 1 & 0\end{array}$
Moles at equilibrium : $1-x \quad 2 x$
Total moles at equilibrium $=1-x+2 x=1+x$
But $\frac{2 x}{1+x}=0.4 \quad$ (given)
$\therefore \quad x=\frac{1}{4}$
So, mole fraction of $\mathrm{I}_{2}=\frac{1-\frac{1}{4}}{1+\frac{1}{4}}=\frac{3}{5}=0.6$,

Mole fraction of $\mathrm{I}=\frac{2 \times \frac{1}{4}}{1+\frac{1}{4}}=\frac{2}{5}=0.4$
$p_{I}=0.4 \times 10^{5} \mathrm{~Pa}$ or $p_{\mathrm{I}_{2}}=0.6 \times 10^{5} \mathrm{~Pa}$
$K_{p}=\frac{p_{l}^{2}}{p_{l_{2}}}=\frac{(0.4)^{2}\left(10^{5}\right)^{2}}{(0.6)\left(10^{5}\right)}=2.67 \times 10^{4}$
30. (a) (i) Low T, high P, excess of N_{2} and H_{2}.
(ii) High T, excess of N_{2} and O_{2}.
(iii) Low T, high P, excess of NO and O_{2}.
(iv) High T, low P, excess of PCl_{5}.
(v) High T, low P, excess of $\mathrm{N}_{2} \mathrm{O}_{4}$.
(b) (i) Addition of an inert gas at constant pressure favours the equilibrium towards larger number of moles.
(ii) When the volume of the container is increased, the pressure exerted by the molecule will decrease. Thus the effect of increase of volume is equivalent to the effect of decrease of pressure. As the effect of decrease of pressure is to shift the equilibrium in the direction in which number of moles increases thus increase in volume or decrease in pressure will favour the forward reaction.
(iii) On adding PCl_{5}, forward reaction will be favoured.

mtG BEST SELLING BOOKS FOR CLASS 11

Visit www.mtg.in for complete information

