Redox Reactions

TRY YOURSELF

ANSWERS

1. The term "oxidation" is defined as the addition of oxygen/electronegative element to a substance or removal of hydrogen/electropositive element from a substance.

Example: $CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$ (Oxidation of CH_4) $2H_2S_{(g)} + O_{2(g)} \longrightarrow 2S_{(s)} + 2H_2O_{(f)}$ (Oxidation of H_2S)

2. The term "reduction" is defined as the removal of oxygen/electronegative element from a substance or addition of hydrogen/electropositive element to a substance.

Example : $2HgO_{(s)} \xrightarrow{\Delta} 2Hg_{(l)} + O_{2(g)}$ (Reduction of HgO) $CH_2 = CH_{2(g)} + H_{2(g)} \rightarrow H_3C - CH_{3(g)}$ (Reduction of ethylene) **3.** BaSO₄ is reduced to BaS because of the removal of oxygen from BaSO₄.

4. A substance which readily accept electrons to oxidise other substance, as a result itself gets reduced is called oxidising agent or an oxidant.

Example :
$$\underset{\text{Oxidant}}{\overset{+7}{\text{MnO}_4^-}} + \text{SO}_3^{2-} \longrightarrow \text{Mn}^{2+} + \text{SO}_4^{2-}$$

In the above reaction, the Mn reduce from +7 (in MnO₄) to +2 (in Mn²⁺). Therefore, MnO₄ is the oxidising agent in this reaction.

5. A substance which readily lose electrons to reduce other substance, as a result itself gets oxidised is called reducing agent or reductant.

Example : $Cl_{2(aq)} + 2Br_{(aq)} \longrightarrow 2Cl_{(aq)} + Br_{2(aq)}$

Br⁻ is reducing agent as in the above reaction oxidation state of Br changes from -1 (in Br⁻) to 0 (in Br₂). This means that Br⁻ oxidises to Br₂.

6. $Br_2 + 2e^- \longrightarrow 2Br^-$ (Reduction half reaction) (Oxidising agent)

 $2Na \longrightarrow 2Na^+ + 2e^-$ (Oxidation half reaction) (Reducing agent)

7. (c) : (a)
$$\overset{+2}{\text{CO}} \overset{+4}{\rightarrow} \overset{+4}{\text{CO}}$$
 (b) $\overset{+2}{\text{CuO}} \overset{+2}{\rightarrow} \overset{+2}{\text{CuCl}}_2$
(c) $\overset{+1}{\text{H}}_2^{\text{O}} \overset{0}{\rightarrow} \overset{+4}{\text{H}}_2$ (d) $\overset{0}{\text{C}} \overset{+4}{\rightarrow} \overset{-4}{\text{CO}}_2$

Only in (c), O.N. of hydrogen decreases from + 1 to 0 and hence H_2O gets reduced to H_2 .

8. The decreasing order of electron-releasing tendency or reactivity is Zn > Cu > Ag. Such order is found from experiments

performed by comparing the reactivity of metals and their aqueous solutions. It is found out that Zinc (Zn) reduces both Cu^{2+} to copper (Cu) and $Ag^+_{(aq)}$ to silver $(Ag)_{(s)}$. While copper only reduces $Ag^+_{(aq)}$ to silver, $Ag_{(s)}$.

9. (i)
$$KMnO_4$$
 +1 + x - 8 = 0
x = +7 Ox. no. of Mn = +7
 K_2MnO_4 +2 + x - 8 = 0
x = +6 Ox. no. of Mn = +6
 MnO_2 x - 4 = 0
x = +4 Ox. no. of Mn = +4
 Mn_2O_3 2x - 6 = 0
x = +3 Ox. no. of Mn = +3
The big back evidence for Mn is in $KMnO_2$ (7)

The highest oxidation number for Mn is in $KMnO_4(+7)$.

ii)	$K_3[Fe(OH)_6]$	+3 + x - 6 = 0	
	5	x = +3 Ox. no. of	Fe = +3
	K ₂ [FeO ₄]	+2 + x - 8 = 0	
	2	x = +6 Ox. no. of	Fe = +6
	$FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O$	In FeSO ₄	Ox. no. of
	1 12 1 2		Fe = +2
	$[Fe(CN)_{6}]^{3-}$	x - 6 = -3	<i>x</i> = +3

The least oxidation number for Fe is in mohr salt $FeSO_4$ (NH₄)₂SO₄·6H₂O *i.e.*, +2.

10. (i) Oxidation number of Cr in $Cr_2O_7^{2-} = +6$ Oxidation number of Cr in $CrO_4^{2-} = +6$

Since, the oxidation number of chromium neither increased nor decreased, therefore, this reaction cannot be regarded as a redox reaction. The oxidation number of other elements, *i.e.*, O and H also remains unchanged.

(ii) $2Cu_2O_{(s)}^{+1} + Cu_2S_{(s)}^{-2} \longrightarrow 6Cu_{(s)}^{0} + SO_{2(g)}^{+4-2}$

Oxidation state of sulphur changes from -2 in Cu₂S to +4 in SO₂ *i.e.*, it is getting oxidised and hence, Cu₂S acts as a reductant or reducing agent.

Oxidation state of copper changes from +1 in Cu₂O to zero in elemental copper *i.e.*, It is getting reduced and hence, Cu₂O acts as an oxidant or oxidising agent.

11. Out of the given, CIO_4^- does not undergo disproportionation reaction because in this oxidation state of +7 is highest for chlorine.

MtG100PERCENT Chemistry Class-11

12. Writing oxidation numbers of all the atoms +2 -2 + 1 -1 +2+6-2 + 1 -2PbS + H₂O₂ \longrightarrow PbSO₄ + H₂O The O.N. of S is increased and that of O is decreased. $\xrightarrow{-2} +6 -1 -2$ PbS \longrightarrow PbSO₄ ...(i) ; H₂O₂ \longrightarrow H₂O ...(ii) Increase in O.N. of S = 8 units per PbS molecule Decrease in O.N. of O = 1 unit per 1/2 H₂O₂ molecule = 2 units per H₂O₂ molecule

Multiply eqn. (ii) by 4 as to make increase in O.N.

$$PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$$

The number of moles of water required in the balanced chemical equation is 4.

13.
$$P_{4(s)}^{0} + OH_{(aq)}^{-3} \longrightarrow PH_{3(g)}^{-3} + H_2^{+1}PO_{2(aq)}^{-3}$$

Oxidation half-reaction,

 $8H_2O_{(l)} + P_{4(s)} \longrightarrow 4H_2PO_{2(aq)}^- + 8H^+_{(aq)} + 4e^-$...(i) Reduction half-reaction,

 $12e^{-} + 12H^{+}_{(aq)} + P_{4(s)} \longrightarrow 4PH_{3(g)} \qquad \dots (ii)$

On multiplying equation (i) by 3 and adding it to equation (ii), we have

 $24H_2O_{(l)} + 3P_{4(s)} + P_{4(s)} \longrightarrow 12H_2PO_{2(aq)}^- + 12H_{(aq)}^+ + 4PH_{3(g)}$ Adding OH⁻ ions on both sides, we have

$$120H_{(aq)}^{-} + 24H_2O_{(l)} + 4P_{4(s)} \longrightarrow 12H_2PO_{2(aq)}^{-} + (12H_{(aq)}^{+} + 120H_{(aq)}^{-}) + 4PH_{3(q)}$$

 $12OH_{(aq)}^{-} + 12H_2O_{(l)} + 4P_{4(s)} \longrightarrow 12H_2PO_{2(aq)}^{-} + 4PH_{3(g)}$ or $P_{4(s)} + 3OH_{(aq)}^{-} + 3H_2O_{(l)} \longrightarrow PH_{3(q)} + 3H_2PO_{2(aq)}^{-}$

14. No. of millimoles of Mohr's salt present in 72 mL of 0.5 M solution = $72 \times 0.5 = 36$

The balanced chemical equation for the redox reaction is $K_2Cr_2O_7 + 6(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_2O + 7H_2SO_4 \longrightarrow$

 $K_2SO_4 + 6(NH_4)_2SO_4 + 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + 43H_2O$ 6 moles of Mohr's salt are oxidised by 1 mole of $K_2Cr_2O_7$ 36 millimoles of Mohr's salt are oxidised by $\frac{1}{6} \times 36$ = 6 millimoles of K₂Cr₂O₇

15. Cl_2 is a stronger oxidising agent than l_2 , therefore, when Cl_2 is passed through KI solution, Cl_2 gets reduced to colourless Cl^- ions while l^- ions gets oxidised to violet coloured iodine.

 $\mathsf{Cl}_{2(aq)} + 2\mathsf{I}_{(aq)}^{-} \longrightarrow 2\mathsf{CI}_{(aq)}^{-} + \mathsf{I}_{2(s)}$

The $\rm I_2$ produced forms a blue coloured complex with starch which is responsible to impart blue colour to the solution.

16. Meq. of Na₂CO₃. *x* H₂O in 20 mL =
$$19.8 \times \frac{1}{10}$$

Meq. of Na₂CO₃.*x*H₂O in 100 mL = $19.8 \times \frac{1}{10} \times 5$

$$\therefore \quad \frac{W}{E} \times 1000 = 19.8 \times \frac{1}{10} \times 5$$
$$\frac{0.7}{M/2} \times 1000 = \frac{19.8}{2}$$

 $\therefore M = 141.41$ 23 × 2 + 12 + 3 × 16 + 18x = 141.41, $\therefore x = 2$

17. KCl cannot be used as an electrolyte in the salt bridge of the given cell because Cl^- ion will combine with Ag^+ ions to form white precipitate of AgCl.

18. Anodic reaction : $2H_2O_{(l)} \longrightarrow O_{2(g)} + 4H_{(aq)}^+ + 4e^-$ Cathodic reaction : $2H_2O_{(l)} + 2e^- \longrightarrow H_{2(g)} + 2OH_{(aq)}^-$

19. E° of H₂O is greater than that of Na⁺ ions, reduction of H₂O takes place preferentially to evolve H₂ gas at the cathode.

20. E° of Br₂, is higher than that of I₂. Therefore, Br₂ has a higher tendency to accept electrons than I₂. Conversely I⁻ ion has a higher tendency to lose electrons than Br⁻ ions.

Therefore, the following reaction will occur

$$\frac{2I^{-} \longrightarrow I_{2} + 2e^{-}}{Br_{2} + 2e^{-} \longrightarrow 2Br^{-}}$$

$$\frac{2I^{-} + Br_{2} \longrightarrow I_{2} + 2Br^{-}}{2I^{-} + 2Br^{-}}$$

 I^- ion will get oxidised to I_2 while Br_2 will be reduced to Br^- ions.

MtG BEST SELLING BOOKS FOR CLASS 11

Visit www.mtg.in for complete information