Haloalkanes and Haloarenes

CHAPTER **10**

ANSWERS

1. (i) **(b)** : An optically pure compound which has optical centre but shows no optical activity because of internal compensation is known as a meso compound. This internal compensationis possible only where there is an even balance of assymmetric centres in the compound.

(ii) **(b)** : Racemic mixture contains *d*- and *l*- isomers in equimolar amount.

(iii) **(b)**

(iv) **(b)** : $CH_3 - C - CH_2CH_3$; 2-Bromobutane : optically active.

(v) (d): $\operatorname{Br-C-H}_{I_*}^{CH_3}$ Br-C-H COOH

EXAM

DRILL

The given compound is unsymmetrical with 2 chiral carbons.

- \therefore Number of optical isomers = $2^2 = 4$.
- 2. Cl₂/Sunlight

3. It is used as antiseptic.

4. Three isomers (-o, -p and -m) of dichlorobenzene are possible.

5. 1-Chloro-4-isopropylbenzene.

6. (c) : Rate of solvolysis directly proportional to stability of carbocation.

7. (d) : $CHCI_3$ on exposure to air forms phosgene gas which is a poisonous gas and is removed by converting it into diethyl carbonate (which is non-poisonous substance).

$$\begin{array}{c} \mathsf{CHCl}_3 \xrightarrow{\mathsf{O}_2 \text{ light}} \mathsf{COCl}_2 + \mathsf{HCl} \\ \xrightarrow{\mathsf{Phosgene}} \\ (\mathsf{Poisonous}) \end{array}$$

9. (d): S_N^2 reaction is involved with inversion of configuration.

12. (b) : CCl_4 is used as a fire extinguisher. The dense, non-combustible vapours cover the burning substance and prevents the availability of oxygen around burning material.

13. (c) : In electrophilic substitution reaction of toluene due to resonance the electron density increases more at *ortho-* and *para-*position that at *meta-*positions.

- 14. (a) OR
- (b) 15. (a)

16. Chloroethane hydrolyses more readily than chloroethene because Cl is bonded to sp^3 carbon atom which has less electronegativity than sp^2 carbon atom of chloroethene.

 $\begin{array}{l} \mathsf{CH}_3-\mathsf{CH}_2-\mathsf{CI}+\mathsf{NaOH}_{(aq)} \longrightarrow \mathsf{CH}_3-\mathsf{CH}_2-\mathsf{OH}+\mathsf{HCI} \\ \mathsf{CH}_2=\mathsf{CHCI}+\mathsf{NaOH}_{(aq)} \longrightarrow \mathsf{No} \text{ reaction.} \end{array}$

17. Alkyl halides react with alcoholic potassium hydroxide to form alkenes. The reaction involves the elimination of H*X* from the alkyl halide and is called dehydrohalogenation reaction.

MtG100PERCENT Chemistry Class-12

$$C_2H_5CI \xrightarrow{A/c. KOH} CH_2 = CH_2$$

As H atom is removed from β carbon atom, its reaction is also called $\beta\text{-elimination}$ reaction.

18.

formation of carbocation intermediate. $C_6H_5CH_2CI$ readily breaks into $C_6H_5CH_2^+$ carbocation which is stabilised by resonance.

Benzyl carbocation is stabilised by resonance. On the other hand carbocation formed in case of CH_3CH_2CI is not resonance stabilised. Therefore, $C_6H_5CH_2CI$ reacts faster than CH_3CH_2CI with OH^- ion

20. Haloarenes (say chlorobenzene) is a resonance hybrid of the following five structures :

Resonance leads to lowering of energy and hence greater stability. On the other hand, no such resonance is possible in haloalkanes. Halogens directly attached to benzene ring are *ortho*, *para*-directing in electrophilic substitution reactions. This is due to greater electron density at these positions in resonance.

 $CHCl_{3} + HNO_{3} \longrightarrow CI - C - NO_{2}$

22. (i) Chloroform in the presence of air gives a poisonous phosgene gas. The reaction is catalysed by light. To slow down this reaction, we store the CHCl₃ in dark coloured bottles.

$$CHCl_3 + \frac{1}{2}O_2 \longrightarrow COCl_2 + HCl_3$$

(ii) A small amount of ethanol is added to convert poisonous COCl₂ (If any) into a non-poisonous diethyl carbonate.

$$COCl_{2} + 2C_{2}H_{5}OH \longrightarrow (C_{2}H_{5})_{2}CO_{3} + 2HCI$$
23. (i) $CH_{3} - CH - CH_{2} + KOH \xrightarrow{\text{Ethanol}}{\Delta}$
 $H \xrightarrow{\text{Br}} CH_{3} - CH = CH_{2} + KBr + H_{2}O$
(ii) $CH_{3}CH_{2} - I + AgNO_{2} \longrightarrow CH_{3}CH_{2}NO_{2} + AgI$
(iii) $CH_{3}CH_{2}Br + Na\overline{O} - C - CH_{3} \xrightarrow{\text{Ethanol}}{\Delta}$
 $CH_{3} - C - OCH_{2}CH_{3} + AgBr$

CH₃-C=CH

Propyne

OR

Haloalkanes and Haloarenes

24. $CH_2 = CH - CH_2CI$ is an allylic chloride that reacts rapidly with AgNO₃ in the cold to give a white precipitate of AgCI, insoluble in HNO₃.

 $CH_3CH_2CH_2CI$ give the same precipitate but after being warmed, because it is less reactive then $CH_2 = CHCH_2CI$.

 $CH_3CH = CHCI$, a vinyl chloride is inert even when heated, as in hexane which lacks CI.

The alkane and vinyl halide are distinguished by adding Br_2 in CCl₄ to each, the red brown Br_2 colour persists in (does not react with) the alkane, but disappears in (react with) the alkene.

25. (i) The boiling points of isomeric haloalkanes decrease with increase in branching. Since, *tert*-butylbromide has a branched structure in comparision to *n*-butyl bromide, it has a lower boiling point.

(ii) In a racemic mixture, one type of rotation is cancelled by another. Therefore, (\pm) butan-2-ol is optically inactive.

$$H_3C - CH - CH_2 - CH_3$$

I
OH

(iii) The C – Cl bond length in chlorobenzene is shorter than that in CH_3 – Cl as in haloalkanes, the halogen atom in chlorobenzene is attached to sp^2 hybridised carbon atom which has more *s*-character than sp^3 carbon atom in haloalkane. Thus C – X bond length in haloarene is shorter and stronger than sp^3 carbon atom in haloalkanes.

OR

(i) When a primary aromatic amine, dissolved or suspended in cold aqueous mineral acid, is treated with sodium nitrite, a diazonium salt is formed. Mixing the solution of the freshly prepared diazonium salt with cuprous chloride or cuprous bromide results in the replacement of the diazonium group by --Cl or --Br.

(ii) Swarts reaction : The synthesis of alkyl fluorides is best accomplished by heating an alkyl chloride/bromide in the presence of metallic fluoride such as AgF, Hg_2F_2 , AsF₃ or SbF₃. These reaction is termed as Swarts reaction.

$$H_3C - Br + AgF \longrightarrow H_3C - F + AgBI$$

26. (i)

$$O + Cl_2 \xrightarrow{Anhy. FeCl_3} O + Cl_2 \xrightarrow{Cl} + O + HCl_1$$
1, 2-Dichlorobenzene

(ii)
$$CH_3CH_2CI + AgNO_2 \longrightarrow CH_3CH_2NO_2 + AgCI$$

Nitroethane
(iii) $CH_2 - CH - CH_2CH_2CH_2 + KOH (4/c) \longrightarrow$

(III)
$$CH_3 - CH - CH_2CH_2CH_3 + KOH (A/c.) \longrightarrow$$

 $CH_3 - CH = CHCH_2CH_3$
Pent-2-ene

- 27. (a) Total eight isomers.
- (i) Three isomers have the pentane skeleton.

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2B$$

1-Bromopentane (1°)

$$CH_3 - CH_2 - CH_2 - CH_3 - CH_3$$

Br
2-Bromopentane (2°)

$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

I
Br
3-Bromopentane (2°)

(ii) Four isomers have the isopentane skeleton :

$$Br - CH_2 - CH - CH_2CH_3$$

 CH_3

1-Bromo-2-methylbutane (1°)

$$CH_3 - C - CH_2CH_3$$

2-Bromo-2-methylbutane (3°)

2-Bromo-3-methylbutane (2°)

$$CH_3$$

I
CH₃ — CH — CH₂ — CH₂Br
1-Bromo-3-methylbutane (1°)

(iii) One isomer has the neopentane skeleton :

$$CH_3$$

 I
 $CH_3 - C - CH_2Br$
 I
 CH_3

1-Bromo-2, 2-dimethylpropane (1°)

MtG100PERCENT Chemistry Class-12

OR

(a) For any type of reaction, wherever the rate determining transition state involves breaking of the C - X bond, the rate is directly related to the leavability of X^- which in turn, is indirectly related to its basicity. The weakest base is the best leaving group :

 $|->Br^->C|->F^-$

The order of reactivity is R - I > R - Br > R - CI > R - F(b) With I⁻, the overall reaction occurs in two steps, each of which is faster than the uncatalysed reaction.

Step-1 : $RCI + I^- \longrightarrow RI + CI^-$

This step is faster because I⁻ has more nucleophilicity than CH₃COO⁻

Step-2 : RI + CH₃COO⁻ \longrightarrow CH₃COOR + I⁻

This step is faster because I^- is a better leaving group than CI^- .

$$\begin{array}{c} \mathsf{CH}_{3}\mathsf{CH} - \mathsf{CH}_{2}\mathsf{CH}_{3} \xrightarrow{\mathsf{PBr}_{3}} \mathsf{CH}_{3} - \mathsf{CH} - \mathsf{CH}_{2} - \mathsf{CH}_{3} \\ \mathsf{OH} \\ \mathsf{Br} \end{array}$$

(b)
$$CH_3CH_2OH \xrightarrow{\text{Red P}} CH_3CH_2I + H_3PO_3$$

(c)
$$O_2N$$
 $CH_2CH_3 \xrightarrow{Br_2/Heat}$ r_1 O_2N O

29.

()

CH3

(i)
$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CI \xrightarrow{Alc. KOH} CH_{3}CH_{2}CH_{2}CH_{2}CH=CH_{2}$$

(ii) $CH_{3} - CH_{2} - CH_{2} - CH - CH_{3} \xrightarrow{Alc. KOH} CH_{3} - CH_{2}CH = CH - CH_{3} + CH_{3}CH_{2}CH_{2}CH = CH_{2}$
(iii) $CH_{3} - \overset{CI}{C} - CH_{2} - CH_{3} \xrightarrow{Alc. KOH} CH_{3} - C = CH - CH_{3}$
 $CH_{2} = C - CH_{2} - CH_{3} + CH_{3} - C = CH - CH_{3}$
 $CH_{2} = C - CH_{2} - CH_{3} + CH_{3} - C = CH - CH_{3}$
 $CH_{3} - CH - CH - CH_{3} \xrightarrow{Alc. KOH} CH_{3}$
 $CH_{3} - CH = C - CH_{3} + CH_{2} = CH - CH - CH_{3}$
 $CH_{3} - CH = C - CH_{3} + CH_{2} = CH - CH - CH_{3}$
 $CH_{3} - CH = C - CH_{3} + CH_{2} = CH - CH - CH_{3}$
 $CH_{3} - CH - CH - CH_{2} - CH_{3} \xrightarrow{Alc. KOH} CH_{3}$
 $CH_{3} - CH - CH - CH_{2} - CH_{3} \xrightarrow{Alc. KOH} CH_{3}$
 $CH_{3} - CH - CH - CH_{2} - CH_{3} \xrightarrow{Alc. KOH} CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - C = CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - CH - CH_{2}CH_{3} + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - CH - CH_{2}CH_{3} + CH_{3}CH - CH + CH_{3}CH - CH = CH - CH_{3}$
 $CH_{3} - CH - CH_{3}CH - CH - CH_{3} + CH_{3}CH - CH + CH_{3}CH + CH_{$

(i) The molecules which are not superimposable on their mirror images are called chiral molecules. The property of non-

superimposability of a structure on its mirror image is called chirality.

(ii) $CH_3CH_2CHCH_3$ hydrolyses easily with KOH because it Cl

is secondary halide.

(iii) As iodide is a better leaving group because of its large

size, therefore, I undergoes S_N2 reaction faster than Cl.

MtG BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information