Aldehydes, Ketones and Carboxylic Acids

1. (c) :

Ethyl acetate (B)
2. (b)

3. (a): Addition of HCN to carbonyl compounds is nucleophilic addition reaction. The order of reactivity of carbonyl compounds is,
$\mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3}>\mathrm{PhCOCH}_{3}>\mathrm{PhCOPh}$.
4. (b)
5. (a): $\mathrm{CH}_{3} \mathrm{CHO}$ is most reactive towards nucleophilic addition reactions. Carbonyl compounds are polar with positive charge on carbon atom which is attacked by nucleophiles. Two electron releasing alkyl groups in ketones make carbon less electron deficient than aldehydes. Benzene ring exhibits $+R$-effect which thereby decreases the ease of nucleophilic addition reaction in benzaldehyde and acetophenone. Hence the reactivity order is

6. p,p-Dihydroxybenzophenone
7. Wolff-Kishner reduction
8. Ethanoic anhydride
9. Acetamide
10. Ethyl benzoate

> OR
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
11. (b)
12. (c): Carboxyl group being an electron withdrawing group only decreases the electron density at 0 - and p-position so, at m-position electron density is comparitively higher.
13. (c) : Aromatic carboxylic acids do not undergo FriedelCrafts reaction, because the carboxyl group is deactivating and the catalyst aluminium chloride (Lewis acid) gets bonded to the carboxyl group.
14. (b)
OR
(c) : Aromatic aldehydes and formaldehyde do not contain α-hydrogen and thus undergo cannizzaro reaction. Formaldehyde is more reactive than aromatic aldehydes.
15. (i)

Ethanal

$$
\xrightarrow[\text { dry ether }]{\mathrm{Na}} \underset{\substack{\text { n-Butane }}}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}
$$

16. The compound has two side chains on the benzene ring at adjacent position. As it gives positive Tollens' test, it indicates the presence of -CHO but without α-hydrogen (because it gives + ve Cannizzaro reaction). The structure of the compound
is

17.

18. (i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\text { Hept-1-ene }]{\mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}}$

$$
\underset{\text { Hexanal }}{\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHO}+\mathrm{HCHO}}
$$

(ii) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\substack{\text { Hept-1-ene }}]{\mathrm{B}_{2} \mathrm{H}_{6} \mathrm{O}_{2} / \mathrm{OH}^{-}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

19. (i)

Benzyl alcohol
(ii)

20. Clemmensen reduction :

Wolff-Kishner reduction :

OR

4-Hydroxy-4-methylpentan-2-one

21. (a) RCOOH dissolves in water because -COOH of RCOOH can form H -bonds with water in two ways:

The $-R$ group is non-polar and hydrophobic and this effect dominates when R posseses more than five carbon atoms.

Thereby decreasing its solubility in more polar solvent (as water) but the solubility in less polar solvent such as alcohol increases.
(b) This is due to the presence of H -bonding.

22. 2, 5-Dimethylhexan-3-one is an unsymmetrical ketone, thus oxidation occurs on either side of $\mathrm{C}=0$ group.

Propan-2-one on further oxidation yields a mixture of ethanoic acid and methanoic acid.

Methanoic acid on further oxidation gives CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

23. (a) 1-Phenylpentane-2,3-dione
(b) 4-Oxocyclohexane-1-carboxylic acid
(c) Hexane-2,4-dione

OR
(a) $\mathrm{HOOC}-\mathrm{CH}$
(b)

(c)

24.

(R)
25. (a) Cannizzaro reaction is given by aldehydes without α-hydrogen. Aldehydes which do not have α-hydrogen in the presence of conc. alkali undergo self redox reaction. One aldehyde gets oxidised to form salt of a carboxylic acid and other aldehyde gets reduced to form 1° alcohol.
Example : $2 \mathrm{HCHO} \xrightarrow{\text { Conc. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOO}^{-}{ }^{+}{ }^{+}$
This reaction is also called a disproportionation reaction.
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CHO} \xrightarrow[\mathrm{HCl}]{\mathrm{Zn} / \mathrm{Hg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
26. Propanal and 2-methylpropanal both have α-hydrogen atom, thus, these undergo cross-aldol condensation in which each one of them can act either as an electrophile or a nucleophile. Thus,
(i)

(ii)

Also, self aldol-condensation also takes place.
(iii)

3-Hydroxy-2-methylpentanal
(iv)

3-Hydroxy-2,2,4
trimethylpentanal
27. (a) The reaction of carbonyl group with $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Z}$ is an acid catalysed reaction.

(b) (i)

(ii)
 Acetaldehyde
(iii)

28. (a) We remove aldehydes as soon as it is formed thus preventing its further oxidation to carboxylic acid.
(b)

Acetone

Mesityl oxide
(c) (i) 2-Chloro-4-oxohexanal
(ii) 4-Hydroxy-2-oxohexane-1,6-dial

Ethyne

29. (a) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}<$

(ii) 4-Methoxybenzoic acid < benzoic acid < 4-nitrobenzoic acid $<3,4$-dinitrobenzoic acid
(iii) Benzoic acid <2-methylbenzoic acid <3-nitrobenzoic acid $<2,4$-dinitrobenzoic acid
(b) (i) Test - NaHCO_{3}

Benzamide	CONH_{2}
No brisk effervescence	It gives brisk effervescence

[^0]
OR

(a) All four isomers contain - COOH group as they evolve CO_{2} on reaction with aqueous NaHCO_{3}.

(1)

3-Hydroxy-2-methyl propanoic acid

(3)

2-Hydroxybutanoic acid

(2)

3-Hydroxybutanoic acid

(4)

2-Methoxypropanoic acid
(b) LiAlH_{4} converts -COOH to $-\mathrm{CH}_{2} \mathrm{OH}$. Only (1) is reduced to an achiral product.

(c) The ether (4) differs from (2) and (3), in that it is inert to oxidation by KMnO_{4}, hence does not decolourise KMnO_{4}. (2) gives a positive iodoform test and iodoform test can be used to distinguish (2) from (3).
30. (i) 120°
(ii)

(iii)

mtG BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information

[^0]: (ii) Test - Hydrolysis in acid followed by $\mathrm{I}_{2} / \mathrm{NaOH}$

