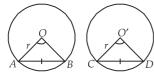
Circles

SOLUTIONS

1. Given : Two congruent circles with centres *O* and *O*' and radii *r* having chords *AB* and *CD* respectively, such that *AB* = *CD*.

To Prove : $\angle AOB = \angle CO'D$

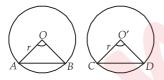
NCERT FOCUS



Proof : In $\triangle AOB$ and $\triangle CO'D$, we have

AB = CD[Given]OA = O'C[Each equal to r]OB = O'D[Each equal to r] $\therefore \quad \Delta AOB \cong \Delta CO'D$ [By SSS congruency criteria] $\Rightarrow \quad \angle AOB = \angle CO'D$ [By C.P.C.T.]

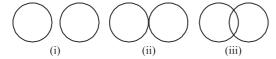
2. Given : Two congruent circles with centres *O* and *O'* and radii *r* having chords *AB* and *CD* respectively, such that $\angle AOB = \angle CO'D$.



To Prove : AB = CD **Proof :** In $\triangle AOB$ and $\triangle CO'D$, we have OA = O'C [Each equal to r] $\angle AOB = \angle CO'D$ [Given] OB = O'D [Each equal to r] $\therefore \ \Delta AOB \cong \triangle CO'D$ [By SAS congruency criteria] Hence, AB = CD [By C.P.C.T.]

EXERCISE - 10.3

1. Let us draw different pairs of circles as shown below:



We have,

In figure	Maximum number of common points	
(i)	Zero	
(ii)	One	
(iii)	Two	

Thus, two circles can have at most two points in common.

2. Steps of construction :

Step I. Take any three points on the given circle. Let these points be *A*, *B* and *C*.

Step II. Join *AB* and *BC*.

Step III. Draw the perpendicular bisector PQ of AB.

Step IV. Draw the perpendicular bisector *RS* of *BC* such that it intersects *PQ* at *O*.

Thus, 'O' is the required centre of the given circle.

3. We have two circles with centres *O* and *O*', intersecting at *A* and *B*.

 \therefore *AB* is the common chord of two circles and *OO*' is the line segment joining their centres. Let *OO*' and *AB* intersect each other at *M*.

 \therefore To prove that *OO*' is the perpendicular bisector of *AB*, we join *OA*, *OB*, *O*'A and *O*'B.

Now, in $\Lambda OAO'$ and $\Lambda OBO'$, we have

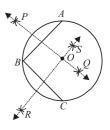
Now, in $\Delta OAO'$ and $\Delta OBO'$, we have			
OA = OB	[Radii of the same circle]		
O'A = O'B	[Radii of the same circle]		
OO' = OO'	[Common]		
$\therefore \Delta OAO' \cong \Delta OBO'$	[By SSS congruency criteria]		
$\Rightarrow \angle 1 = \angle 2$	[By C.P.C.T.]		
Now, in $\triangle AOM$ and $\triangle BOA$	/l, we have		
OA = OB	[Radii of the same circle]		
OM = OM	[Common]		
$\angle 1 = \angle 2$	[Proved above]		
$\therefore \Delta AOM \cong \Delta BOM$	[By SAS congruency criteria]		
$\Rightarrow \angle 3 = \angle 4$	[By C.P.C.T.]		
But $\angle 3 + \angle 4 = 180^{\circ}$	[Linear pair]		
$\therefore \angle 3 = \angle 4 = 90^{\circ} \Longrightarrow AM$	$\perp OO'$		
Also $AM = BM$	[By C.P.C.T.]		
\Rightarrow <i>M</i> is the mid-point of	AB.		

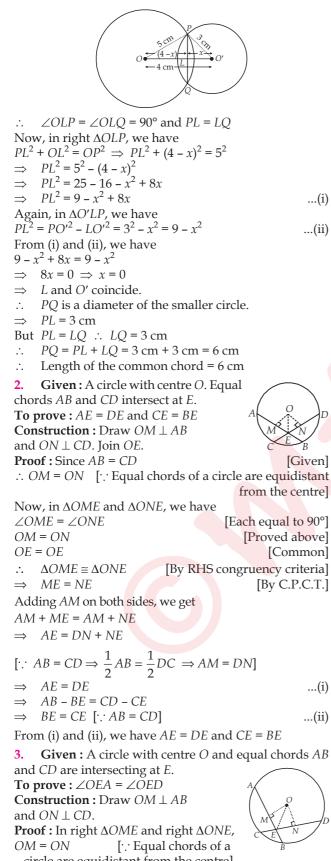
Thus, OO' is the perpendicular bisector of *AB*.

EXERCISE - 10.4

1. We have two intersecting circles with centres at *O* and *O*' respectively. Let *PQ* be the common chord.

 \therefore In two intersecting circles, the line joining their centres is perpendicular bisector of the common chord.





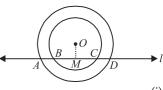
circle are equidistant from the centre] OE = OE

MtG 100 PERCENT Mathematics Class-9

 $\angle OME = \angle ONE$ [Each equal to 90°] $\Delta OME \cong \Delta ONE$ [By RHS congruency criteria] • $\angle OEM = \angle OEN$ [By C.P.C.T.] · · . $\angle OEA = \angle OED$ \Rightarrow Given : Two concentric circles with centre O. Let a 4

line 'l' intersects the outer circle at A and D and the inner circle at *B* and *C*.

To prove : AB = CD. **Construction** : Draw $OM \perp l$. **Proof** : For the outer circle, $OM \perp l$ $\therefore AM = MD$



...(i) [:: Perpendicular drawn from the

centre of a circle to the chord bisects the chord] For the inner circle, $OM \perp l$ BM = MC....

...(ii)

[·: Perpendicular drawn from the centre of a circle to the chord bisects the chord] Subtracting (ii) from (i), we have AM - BM = MD - MC

AB = CD \Rightarrow

5. Let the three girls Reshma, Salma and Mandip be positioned at R, S and *M* respectively on the circle of radius 5 m. RS = SM = 6 m [Given] \therefore Equal chords of a circle subtend equal angles at the centre. ∴ ∠1 = ∠2 ...(i) In $\triangle POR$ and $\triangle POM$, we have OP = OP[Common] OR = OM[Radii of the same circle] $\angle 1 = \angle 2$ [By (i)] $\therefore \quad \Delta POR \cong \Delta POM$ [By SAS congruency criteria] PR = PM and $\angle OPR = \angle OPM$ [By C.P.C.T.] ... $\angle OPR + \angle OPM = 180^{\circ}$ [Linear pair] • • $\angle OPR = \angle OPM = 90^{\circ}$ *.*•. $\Rightarrow OP \perp RM$ Now, in $\triangle RSP$ and $\triangle MSP$, we have RS = MS[Given] SP = SP[Common] PR = PM[Proved above] [By SSS congruency criteria] $\Delta RSP \cong \Delta MSP$ *.*.. $\Rightarrow \angle RPS = \angle MPS$ [By C.P.C.T.] But $\angle RPS + \angle MPS = 180^{\circ}$ $\Rightarrow \angle RPS = \angle MPS = 90^{\circ}$ \therefore SP passes through O. [:: Radius = 5 m] Let OP = x m \therefore SP = (5 - x) mNow, in right $\triangle OPR$, we have $x^2 + RP^2 = 5^2 \implies RP^2 = 5^2 - x^2$...(1) In right $\triangle SPR$, we have

From (1) and (2), we have $5^2 - x^2 = 6^2 - (5 - x)^2$

$$(5 - x)^{2} + RP^{2} = 6^{2}$$

$$\Rightarrow RP^{2} = 6^{2} - (5 - x)^{2} \qquad ...(2)$$
From (1) and (2) we have

[Common]

Circles

$$\Rightarrow 25 - x^{2} = 36 - [25 - 10x + x^{2}]$$

$$\Rightarrow -10x + 14 = 0 \Rightarrow 10x = 14$$

$$\Rightarrow x = \frac{14}{10} = 1.4$$
Now, $RP^{2} = 5^{2} - x^{2} \Rightarrow RP^{2} = 25 - (1.4)^{2}$

$$\Rightarrow RP^{2} = 25 - 1.96 = 23.04 \text{ m}$$

$$\therefore RP = \sqrt{23.04} = 4.8 \text{ m}$$

$$\therefore RP = \sqrt{23.04} = 4.8 \text{ m}$$

$$\therefore RM = 2RP = 2 \times 4.8 \text{ m} = 9.6 \text{ m}$$
Thus, distance between Reshma and Mandip is 9.6 m.
6. Let Ankur, Syed and David are sitting at *A*, *S* and *D*
respectively such that $AS = SD = AD$
i.e. ASD is an equilateral triangle.
Let the length of each side of the equilateral triangle be
 $2x \text{ m and } O$ be the centre of circle.
Draw $AM \perp SD$.
Since ΔSD is an equilateral.

$$\therefore AM$$
 passes through *O*.

$$\Rightarrow SM = \frac{1}{2}SD = \frac{1}{2}(2x)$$

$$\Rightarrow SM = x \text{ m}$$
Now, in right ΔASM , we have
 $AM^{2} + SM^{2} = AS^{2}$

$$\Rightarrow AM^{2} = AS^{2} - SM^{2} = (2x)^{2} - x^{2} = 4x^{2} - x^{2} = 3x^{2}$$

$$\Rightarrow AM = \sqrt{3}x \text{ m}$$
Now, $OM = AM - OA = (\sqrt{3}x - 20) \text{ m}$
[Given, radius = 20 m]
Again, in right ΔOSM , we have
 $OS^{2} = SM^{2} + OM^{2}$

$$\Rightarrow 20^{2} = x^{2} + (\sqrt{3}x - 20)^{2}$$

$$\Rightarrow 400 = x^{2} + 3x^{2} - 40\sqrt{3}x + 400$$

$$\Rightarrow 4x^{2} = 40\sqrt{3}x \Rightarrow x(4x - 40\sqrt{3}) = 0$$

$$\Rightarrow x = 10\sqrt{3}$$

Now, $SD = 2x = 2 \times 10\sqrt{3} = 20\sqrt{3}$ m Thus, the length of the string of each phone = $20\sqrt{3}$ m

EXERCISE - 10.5

- We have a circle with centre O, such that 1. $\angle AOB = 60^{\circ} \text{ and } \angle BOC = 30^{\circ}$
- $\angle AOC = \angle AOB + \angle BOC$ • .•
- $\angle AOC = 60^\circ + 30^\circ = 90^\circ$

We know, angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \quad \angle ADC = \frac{1}{2}(\angle AOC) = \frac{1}{2}(90^\circ) = 45^\circ$$

2. We have a circle having a chord *AB* equal to radius of the circle.

AO = BO = AB*.*...

 $\Rightarrow \Delta AOB$ is an equilateral triangle. Since, each angle of an equilateral triangle is 60°.

 $\Rightarrow \angle AOB = 60^{\circ}$

Since, the arc ACB makes reflex $\angle AOB = 360^{\circ} - 60^{\circ}$ = 300° at the centre of the circle and $\angle ACB$ at a point on the minor arc of the circle.

$$\therefore \quad \angle ACB = \frac{1}{2} [reflex \angle AOB] = \frac{1}{2} [300^\circ] = 150^\circ$$

Hence, the angle subtended by the chord on the minor arc is 150°.

Similarly,
$$\angle ADB = \frac{1}{2}[\angle AOB] = \frac{1}{2} \times 60^\circ = 30^\circ$$

Hence, the angle subtended by the chord on the major arc is 30°.

: Angle subtended by an arc at the centre is double 3. the angle subtended by it at any point on the remaining part of the circle.

 \therefore Reflex $\angle POR = 2 \angle PQR$ But $\angle PQR = 100^{\circ}$ [Given] $\therefore \quad \text{Reflex } \angle POR = 2 \times 100^\circ = 200^\circ$ Since, $\angle POR + \text{reflex } \angle POR = 360^{\circ}$ $\Rightarrow \angle POR = 360^\circ - 200^\circ \Rightarrow \angle POR = 160^\circ$ In $\triangle POR$, OP = OR[Radii of the same circle] $\angle OPR = \angle ORP$ ÷. ...(1) [:: Angles opposite to equal sides of a triangle are equal.] Also, $\angle OPR + \angle ORP + \angle POR = 180^{\circ}$ [:: Sum of the angles of a triangle is 180°] $\angle OPR + \angle OPR + 160^\circ = 180^\circ$ [From (i)] $2\angle OPR = 180^{\circ} - 160^{\circ} = 20^{\circ}$ \Rightarrow $\angle OPR = \frac{20^{\circ}}{2} = 10^{\circ}$ = 20 m] In $\triangle ABC$, $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ [By angle sum property of a triangle] $69^{\circ} + 31^{\circ} + \angle BAC = 180^{\circ}$ $\angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$ Angles in the same segment are equal. • .• $\angle BDC = \angle BAC \implies \angle BDC = 80^{\circ}$ *.*.. 5. In $\triangle ECD$, $\angle BEC = \angle EDC + \angle ECD$ [:: Sum of interior opposite angles of a triangle is equal to exterior angle] $130^\circ = \angle EDC + 20^\circ$ \Rightarrow $\angle EDC = 130^{\circ} - 20^{\circ} = 110^{\circ} \Rightarrow \angle BDC = 110^{\circ}$ \Rightarrow • • Angles in the same segment are equal. $\angle BAC = \angle BDC \implies \angle BAC = 110^{\circ}$ • 6. : Angles in the same segment of a circle are equal. $\angle BAC = \angle BDC$ *.*.. $\Rightarrow \angle BDC = 30^{\circ}$ Also, $\angle DBC = 70^{\circ}$ [Given] In $\triangle BCD$, $\angle BCD + \angle DBC + \angle CDB = 180^{\circ}$ [By angle sum property of a triangle] $\angle BCD + 70^{\circ} + 30^{\circ} = 180^{\circ}$ \Rightarrow $\Rightarrow \angle BCD = 180^\circ - 100^\circ = 80^\circ$ Now, in $\triangle ABC$, AB = BC*.*.. $\angle BCA = \angle BAC$ [:: Angles opposite to equal sides of a triangle are equal] $\Rightarrow \angle BCA = 30^{\circ}$ $[:: \angle BAC = 30^\circ]$ Now, $\angle BCA + \angle ECD = \angle BCD$ \Rightarrow 30° + $\angle ECD = 80°$ \rightarrow $\angle ECD = 80^{\circ} - 30^{\circ} = 50^{\circ}$

MtG 100 PERCENT Mathematics Class-9

7. Let ABCD is a cyclic quadrilateral and its diagonals AC and BD intersect at O.

Since, AC and BD are diameters. $\Rightarrow AC = BD$...(i) [:: All diameters of a circle are equal] Also, $\angle BAD = 90^{\circ}$ [:: Angle in a semi-circle is 90°] Similarly, $\angle ABC = 90^\circ$, $\angle BCD = 90^\circ$ and $\angle CDA = 90^{\circ}$ Now, in right $\triangle ABC$ and right $\triangle BAD$, we have AC = BD[From (i)] AB = BA[Common] $\angle ABC = \angle BAD$ [Each equal to 90°]

[By RHS congruency criteria] ÷. $\Delta ABC \cong \Delta BAD$ $\Rightarrow BC = AD$ [By C.P.C.T.]

Similarly, AB = DC

Thus, the cyclic quadrilateral ABCD is such that its opposite sides are equal and each of its angle is right angle.

ABCD is a rectangle. *.*...

We have, a trapezium ABCD such that AB || CD and 8. AD = BC.

Let us draw *BE* || *AD* such that *ABED* is a parallelogram.

 \cdot The opposite angles of a parallelogram are equal.

.... $\angle BAD = \angle BED$

and AD = BE...(ii) [Opposite sides of a parallelogram] But AD = BC [Given] ...(iii)

... From (ii) and (iii), we have $BE = BC \Rightarrow \angle BEC = \angle BCE \dots (iv)$

[:: Angles opposite to equal sides of a triangle are equal] Now, $\angle BED + \angle BEC = 180^{\circ}$ [Linear pair] $\Rightarrow \angle BAD + \angle BCE = 180^{\circ}$ [Using (i) and (iv)]

i.e. A pair of opposite angles of quadrilateral ABCD is 180°.

Trapezium ABCD is cyclic. \Rightarrow

Since, angles in the same segment of a circle are 9. equal.

 $\angle ACP = \angle ABP$ *.*..

Similarly, $\angle OCD = \angle OBD$ Since, $\angle ABP = \angle QBD$ [Vertically opposite angles]

From (i) and (ii), we have *.*..

```
\angle ACP = \angle QCD
```

10. We have, $\triangle ABC$ and two circles described with diameter as AB and AC respectively. They intersect at a point *D*, other than *A*. Let us join A and D.

AB is a diameter and $\angle ADB$ is an angle formed in a • • semicircle.

 $\Rightarrow \angle ADB = 90^{\circ}$...(i) ...(ii)

Similarly, $\angle ADC = 90^{\circ}$

Adding (i) and (ii), we have

 $\angle ADB + \angle ADC = 90^\circ + 90^\circ = 180^\circ$

i.e., *B*, *D* and *C* are collinear points.

 \Rightarrow *BC* is a straight line. Thus, *D* lies on *BC*.

11. We have, $\triangle ABC$ and $\triangle ADC$ such that they are having AC as their common hypotenuse.

AC is a hypotenuse and $\angle ADC = 90^\circ = \angle ABC$ •.•

... Both the triangles are in semicircle.

Case-1 : If both the triangles are in the same semicircle.

 \Rightarrow A, B, C and D are concyclic. Join BD.

Now, DC is a chord and $\angle CAD$ and $\angle CBD$ are formed in the same segment. $\Rightarrow \angle CAD = \angle CBD$

Case-2: If both the triangles are not in same semicircle.

 \Rightarrow A, B, C and D are concyclic. Ioin BD.

Now, DC is a chord and $\angle CAD$ and $\angle CBD$ are formed in the same segment.

 $\Rightarrow \angle CAD = \angle CBD$

12. We have a cyclic parallelogram *ABCD*. Since, *ABCD* is a cyclic quadrilateral.

<i>.</i>	$\angle A + \angle$	$C = 180^{\circ}$	(i)	
But	$\angle A = \angle$	C	(ii)	

[:: Opposite angles of a parallelogram are equal]

From (i) and (ii), we have

 $\angle A = \angle C = 90^{\circ}$

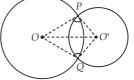
Similarly, $\angle B = \angle D = 90^\circ$

 \Rightarrow Each angle of the parallelogram ABCD is 90°.

Thus, ABCD is a rectangle.

EXERCISE - 10.6

Given : Two circles with centres O and O' 1. respectively such that they intersect each other at *P* and *Q*.



To prove : $\angle OPO' = \angle OQO'$.

Construction : Join *OP*, *O'P*, *OQ*, *O'Q* and *OO'*.

Proof : In $\triangle OPO'$ and $\triangle OQO'$, we have

OP = OQ	[Radii of the same circle]
O'P = O'Q	[Radii of the same circle]
OO' = OO'	[Common]
$\therefore \Delta OPO' \cong \Delta OQO'$	[By SSS congruency criteria]
$\Rightarrow \angle OPO' = \angle OQO'$	[By C.P.C.T.]

We have a circle with centre O, $AB \parallel CD$ and the 2. perpendicular distance between AB and CD is 6 cm and AB = 5 cm, CD = 11 cm.

Let 'r' be the radius of the circle.

Let us draw $OP \perp AB$ and $OQ \perp CD$.

Join OA and OC. 100

$$\therefore OQ = x \text{ cm}$$

$$\therefore OP = (6 - x) \text{ cm}$$

<u>: </u> \downarrow (6-x) cm $O \xrightarrow{} x cm$

ö

...(i)

...(ii)

... The perpendicular drawn from the centre of a circle to a chord bisects the chord.

$$\therefore AP = \frac{1}{2}AB = \frac{1}{2} \times 5 = \frac{5}{2} \text{ cm},$$

$$CQ = \frac{1}{2}CD = \frac{1}{2} \times 11 = \frac{11}{2} \text{ cm}$$
In ΔCQO , we have $CO^2 = CQ^2 + OQ^2$
 $\Rightarrow r^2 = \left(\frac{11}{2}\right)^2 + x^2 \Rightarrow r^2 = \frac{121}{4} + x^2 \qquad \dots (i)$
In ΔAPO , we have $AO^2 = AP^2 + OP^2$
 $\Rightarrow r^2 = \left(\frac{5}{2}\right)^2 + (6 - x)^2$
 $\Rightarrow r^2 = \frac{25}{4} + [36 - 12x + x^2] \qquad \dots (ii)$
From (i) and (ii), we have

$$\frac{25}{4} + 36 - 12x + x^2 = \frac{121}{4} + x^2$$

$$\Rightarrow -12x = \frac{121}{4} - \frac{25}{4} - 36$$

$$\Rightarrow 12x = 12$$

$$\Rightarrow x = 1$$

Substituting the value of *x* in (i), we get

$$r^{2} = \frac{121}{4} + 1 = \frac{125}{4} \Rightarrow r = \frac{5\sqrt{5}}{2} \text{ cm}$$

$$[\because r \neq -\frac{5\sqrt{5}}{2}, \text{ as radius can't be negative}]$$
Thus, the readius of the simple is $5\sqrt{5}$

Thus, the radius of the circle is $\frac{1}{2}$ cm.

We have a circle with centre O. Parallel chords AB 3. and CD are such that the smaller chord is 4 cm away from the centre.

Let *r* be the radius of circle. Draw $OP \perp AB$ and join OA and OC. We know that, perpendicular from the centre of a circle to a chord bisects the chord.

$$\therefore AP = \frac{1}{2}AB = \frac{1}{2}(6 \text{ cm}) = 3 \text{ cm}$$

Similarly, $CQ = \frac{1}{2}CD = \frac{1}{2}(8 \text{ cm}) = 4 \text{ cm}$
Now in $\triangle OPA$, we have $OA^2 = OP^2 + AP^2$
 $\Rightarrow r^2 = 4^2 + 3^2 \Rightarrow r^2 = 16 + 9 = 25$
 $\Rightarrow r = \sqrt{25} = 5 \text{ cm}$

[$: r \neq -5$, as distance cannot be negative] Again, in $\triangle CQO$, we have $OC^2 = OQ^2 + CQ^2$

$$\Rightarrow r^{2} = OQ^{2} + 4^{2} \Rightarrow OQ^{2} = r^{2} - 4^{2} = 5^{2} - 4^{2} [:: r = 5 \text{ cm}]$$

$$\Rightarrow OQ^{2} = 25 - 16 = 9$$

$$\Rightarrow OO = \sqrt{9} = 3 \text{ cm}$$

The distance of the other chord (CD) from the centre is 3 cm.

Note : In case we take the two parallel chords on either side of the centre, then

In
$$\triangle POA$$
, $OA^2 = OP^2 + PA^2$
 $\Rightarrow r^2 = 4^2 + 3^2 = 5^2$
 $\Rightarrow r = 5 \text{ cm}$
In $\triangle QOC$, $OC^2 = CQ^2 + OQ^2$
 $\Rightarrow r^2 = 4^2 + OQ^2$
 $\Rightarrow OQ^2 = r^2 - 4^2 = 5^2 - 4^2 = 9$

4. **Given** : $\angle ABC$ such that when we produce arms *BA* and *BC*, they make two equal chords *AD* and *CE*.

To prove :
$$\angle ABC = \frac{1}{2}(\angle DOE - \angle AOC)$$

Construction : Join AC, DE and AE.

I

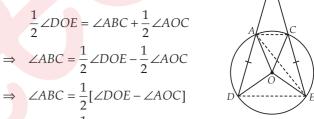
Proof: Since an exterior angle of a triangle is equal to the sum of interior opposite angles.

$$\therefore \quad \ln \Delta BAE, \text{ we have} \\ \angle DAE = \angle ABC + \angle AEC \qquad \dots (i)$$

The chord *DE* subtends $\angle DOE$ at the centre and $\angle DAE$ in the remaining part of the circle.

Similarly, $\angle AEC = \frac{1}{2} \angle AOC$

From (i), (ii) and (iii), we have



 $\angle ABC = \frac{1}{2}$ [(Angle subtended by the chord *DE* at the centre) - (Angle subtended by the chord *AC* at the centre)]

 $\angle ABC = \frac{1}{2}$ [Difference of the angles subtended by the chords *DE* and *AC* at the centre]

Let ABCD be a rhombus 5. whose diagonals AC and BD intersect at E. Let O be centre of the circle with diameter AB. We know that the diagonals of a rhombus intersect each other at right angle.

$$\Rightarrow \angle AEB = 90^{\circ}$$

 \Rightarrow

cm

i.e., $\angle AEB$ is in semi-circle.

 \Rightarrow Circle with *AB* as diameter passes through *E i.e.*, the point of intersection of its diagonals.

Given : A circle passing through A, B and C is 6. drawn such that it intersects CD at E.

To prove : AE = AD

Construction : Join AE.

Proof : *ABCE* is a cyclic quadrilateral

$$\therefore \ \ \angle AEC + \angle B = 180^{\circ} \qquad ...(i)$$
[:: Opposite angles of a cyclic quadrilateral are supplementary]
But *ABCD* is a parallelogram. [Given]

...(iii)

MtG 100 PERCENT Mathematics Class-9

$$\therefore \ \ \angle D = \angle B \qquad \dots(ii)$$
[: Opposite angles of a parallelogram are equal]
From (i) and (ii), we have

$$\angle AEC + \angle D = 180^{\circ} \qquad \dots(iii)$$
But $\angle AEC + \angle AED = 180^{\circ} \qquad \dots(iv)$
[Linear pair]
From (iii) and (iv), we have

$$\angle D = \angle AED$$

i.e., The base angles of $\triangle ADE$ are equal.

- ... Opposite sides must be equal.
- $\Rightarrow AD = AE$

7. Given : A circle with centre at *O*. Two chords *AC* and *BD* are such that they bisect each other. Let their point of intersection be *O*.

To prove : (i) AC and BD are diameters.

(ii) ABCD is a rectangle.

Construction : Join *AB*, *BC*, *CD* and *DA*.

Proof : (i) In $\triangle AOB$ and $\triangle COD$, we have

AO = CO	[Radii of same circle]
BO = DO	[Radii of same circle]
$\angle AOB = \angle COD$	[Vertically opposite angles]
$\therefore \Delta AOB \cong \Delta COD$	[By SAS congruency criteria]
$\Rightarrow AB = CD$	[By C.P.C.T.]

 $\Rightarrow \text{ arc } AB = \text{ arc } CD \quad \dots(1) \quad [:: \text{ If two chords are equal, then their corresponding arcs are equal (congruent)]}$ Similarly, arc $AD = \text{ arc } BC \qquad \dots(2)$

Adding (1) and (2), we get

 $\operatorname{arc} AB + \operatorname{arc} AD = \operatorname{arc} CD + \operatorname{arc} BC$

- $\Rightarrow \widehat{B}A\widehat{D} = \widehat{B}C\widehat{D}$ BD divides the circle into two
- equal parts

 \therefore *BD* is a diameter.

Similarly, AC is a diameter.

(ii) $\Delta AOB \cong \Delta COD$

- $\Rightarrow \angle OAB = \angle OCD$
- $\Rightarrow \angle CAB = \angle ACD \Rightarrow AB \parallel DC$

Similarly, AD || BC

∴ *ABCD* is a parallelogram

Since, opposite angles of a parallelogram are equal

 $\therefore \quad \angle DAB = \angle DCB$ But $\angle DAB + \angle DCB = 180^{\circ}$

 $DUU \ ZDAD + ZDCD = 180$

[Sum of the opposite angles of a cyclic quadrilateral is 180°]

 $\Rightarrow \angle DAB = 90^\circ = \angle DCB$ Thus, *ABCD* is a rectangle.

8. **Given :** A triangle *ABC* inscribed in a circle, such that bisectors of $\angle A$, $\angle B$ and $\angle C$ intersect the circumcircle at *D*, *E* and *F* respectively.

To prove : Angles of $\triangle DEF$ are $90^{\circ} - \frac{1}{2} \angle A$, $90^{\circ} - \frac{1}{2} \angle B$ and $90^{\circ} - \frac{1}{2} \angle C$.

Construction : Join *DE*, *EF* and *FD*.

Proof : Since, angles in the same segment are equal.

$$\therefore \ \angle FDA = \angle FCA \qquad \dots (i) \\ \angle EDA = \angle EBA \qquad \dots (ii)$$

Adding (i) and (ii), we have

$$\angle FDA + \angle EDA = \angle FCA + \angle EBA$$

$$\Rightarrow \angle FDE = \angle FCA + \angle EBA$$

$$= \frac{1}{2}\angle C + \frac{1}{2}\angle B = \frac{1}{2}[\angle C + \angle B]$$

$$= \frac{1}{2}[180^{\circ} - \angle A] = \left(90^{\circ} - \frac{\angle A}{2}\right)$$
Similarly, $\angle FED = \left(90^{\circ} - \frac{\angle B}{2}\right)$

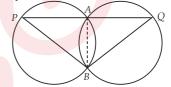
and
$$\angle EFD = \left(90^\circ - \frac{\angle C}{2}\right)$$

Thus, the angles of ΔDEF are

$$\left(90^{\circ}-\frac{\angle A}{2}\right), \left(90^{\circ}-\frac{\angle B}{2}\right) \text{ and } \left(90^{\circ}-\frac{\angle C}{2}\right).$$

9. Given : Two congruent circles such that they intersect each other at *A* and *B*. A line passing through *A*, meets the circles at *P* and *Q*.

To prove : BP = BQ**Construction :** Join *AB*.



Proof : Since, angles subtended by equal chords in the congruent circles are equal.

 $\Rightarrow \angle APB = \angle AQB$

Now, in $\triangle PBQ$, we have

$$\angle APB = \angle AQB$$

PB = *BQ* [Sides opposite to equal angles of a triangle are equal]

10. Given: ΔABC with O as centre of its circumcircle. The perpendicular bisector of *BC* passes through *O*. Suppose it cut circumcircle at *P*. **To prove :** The perpendicular

bisector of *BC* and bisector of $\angle A$ of $\triangle ABC$ intersect at *P*.

B P C

Construction : Join *OB* and *OC*.

Proof : In order to prove that the perpendicular bisector of *BC* and bisector of $\angle A$ of $\triangle ABC$ intersect at *P*, it is sufficient to show that *AP* is bisector of $\angle A$ of $\triangle ABC$.

Let arc *BC* makes angle θ on the circumference

 $\therefore \angle BOC = 2\theta$ [Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

Also, in $\triangle BOC$, OB = OC and OP is perpendicular bisector of *BC*.

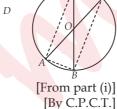
So,
$$\angle BOP = \angle COP = \theta$$

Arc *CP* makes angle θ at *O*, so it will make angle $\frac{\theta}{2}$ at circumference.

So,
$$\angle CAP = \frac{\theta}{2}$$

Hence, *AP* is angle bisector of $\angle A$ of $\triangle ABC$.

6



MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information