Circles

TRY YOURSELF

SOLUTIONS

[Using (i)]

[Using (i)]

Let *r* be the radius of circle. 1.

In $\triangle AOC$,

- OA = OC = r[Radii of same circle] $\angle OAC = \angle OCA = x$...(i) [:: Angles opposite to *.*... equal sides of a triangle are equal]
- .• BOC is a straight line.
- $\angle AOC + \angle AOB = 180^{\circ}$ ÷.
- $\angle AOC = 180^{\circ} 70^{\circ}$ \Rightarrow
- $\angle AOC = 110^{\circ}$ \Rightarrow

Thus, angle subtended by chord AC at centre O, $\angle AOC$ $= 110^{\circ}$

Now, in $\triangle AOC$, $\angle OAC + \angle OCA + \angle AOC = 180^{\circ}$

 $x + x + \angle AOC = 180^{\circ}$

 $\Rightarrow 2x = 180^{\circ} - 110^{\circ}$

 $2x = 70^\circ \Rightarrow x = 35^\circ$ \Rightarrow

Let *AB* be the chord of a circle which makes a right angle at centre *O*. Radius of circle = 10 cm [Given]

 $\therefore OA = OB = 10 \text{ cm}$ Now, in right $\triangle OAB$, we have

 $AB^2 = OA^2 + OB^2$

[By Pythagoras theorem] $\Rightarrow AB^2 = (10)^2 + (10)^2$

...(i)

$$\Rightarrow AB^2 = 100 + 100$$

 $AB = \sqrt{200} \implies AB = 10\sqrt{2} \text{ cm}$ \Rightarrow

Hence, length of chord of circle is $10\sqrt{2}$ cm.

Given, AB = BC = CA3.

We know that, equal chords of a circle subtend equal angles at the centre.

 $\therefore \ \angle AOB = \angle BOC = \angle AOC$...(i) Now, $\angle AOB + \angle BOC + \angle AOC = 360^{\circ}$

$$\Rightarrow 3 \angle AOB = 360^{\circ}$$
 [Using (i)]

$$\Rightarrow \ \ \angle AOB = \frac{360^{\circ}}{3} = 120^{\circ}$$

Hence, angle subtended by the chords AB, BC and CA at the centre O is 120°.

4. Given, CD = DE = EF = FG

We know that, equal chords of a circle subtend equal angles at the centre.

$$\therefore \ \angle COD = \angle DOE = \angle EOF = \angle FOG = 40^{\circ} \qquad \dots (i)$$

Now, $\angle COG = \angle COD + \angle DOE + \angle EOF + \angle FOG$
$$\Rightarrow \ \angle COG = 4 \times \angle COD = 4 \times 40^{\circ}$$

$$\Rightarrow \ \angle COG = 160^{\circ}$$

$$\therefore \ Poflow \ \angle COC = 260^{\circ} \ 160^{\circ} = 200^{\circ}$$

Reflex $\angle COG = 360^{\circ} - 160^{\circ} = 200$

Given, radius (*OB*) = 5 cm, *OC* = 3 cm and *OC* \perp *AB*. Now, in right angled $\triangle OCB$, ~ - 2 a^2 b^2

$$OB^2 = OC^2 + BC^2$$

$$\Rightarrow (5)^2 = (2)^2 + BC^2$$

$$\Rightarrow (5)^2 = (3)^2 + BC^2$$

 $\Rightarrow BC^2 = 5^2 - 3^2 = 25 - 9 = 16$

 \Rightarrow BC = 4 cm [:: BC \neq - 4, as length can't be negative] We know that, the perpendicular from the centre of a circle to a chord bisects the chord.

 $AB = 2BC = 2 \times 4 = 8 \text{ cm}$ *.*..

We know that the perpendicular 6. bisector of any chord of a circle always passes through the centre of the circle. Since, *l* is the perpendicular bisector of *AB*. Therefore, *l* passes through the centre, O of the circle.

But, $l \perp AB$ and $AB \parallel CD \implies l \perp CD$. Thus, $l \perp CD$ and passes through the centre, O of the circle. So, l is the perpendicular bisector of CD also.

[By Pythagoras theorem]

7. Given, PQ and RS are two chords of a circle having centre at O and ON = 4 cm.

Since, equal chords of a circle are equidistant from the centre.

 $\therefore OM = ON = 4 \text{ cm}$

Draw $OE \perp AB$ and $OF \perp CD$. 8. In $\triangle OEP$ and $\triangle OFP$, we have $\angle OEP = \angle OFP$ [Each equal 90°] OP = OP[Common] and $\angle OPE = \angle OPF$ [:: *OP* bisects $\angle APD$] [By AAS congruency criteria] $\triangle OEP \cong \triangle OFP$ *.*. $\Rightarrow OE = OF$ [By C.P.C.T.]

Thus, chords AB and CD are equidistant from the centre O of the circle.

But, chords of a circle which are equidistant from the centre are equal.

... AB = CD

9. Given : *AB* and *CD* are two equal chords of a circle intersecting at a point *P*.

To prove : *PB* = *PD*

Construction : Join OP, draw $OL \perp AB$ and $OM \perp CD$ **Proof :** We have, *AB* = *CD* $\Rightarrow OL = OM$

...(i)

[:: Equal chords of a circle are equidistant from the centre]

MtG 100 PERCENT Mathematics Class-9

13. Join *AB*.

Now, in $\triangle OLP$ and $\triangle OMP$, OL = OM[From (i)] $\angle OLP = \angle OMP$ [Each equal to 90°] OP = OP[Common] $\therefore \Delta OLP \cong \Delta OMP$ [By RHS congruency criteria] $\Rightarrow LP = MP$ [By C.P.C.T.]... (ii) Also, AB = CD[Given] $\Rightarrow \frac{1}{2}(AB) = \frac{1}{2}(CD)$ $\Rightarrow BL = DM$... (iii)

[:: The perpendicular drawn from the centre of a circle bisects the chord.]

On subtracting (iii) from (ii), we get

- LP BL = MP DM
- $\Rightarrow PB = PD$
- **10.** In $\triangle OAB$, OA = OB[Radii of same circle] $\angle OBA = \angle OAB = 40^{\circ}$

[: Angles opposite to equal sides of a triangle are equal] Also, $\angle AOB + \angle OBA + \angle OAB = 180^{\circ}$

[∵ Sum of angles of a triangle is 180°]

- $\angle AOB + 40^{\circ} + 40^{\circ} = 180^{\circ}$ *.*...
- $\Rightarrow \angle AOB = 180^\circ 80^\circ = 100^\circ$

Since, the angle subtended by an arc at the centre is twice the angle subtended by it at any point on the remaining part of the circle.

- $\angle AOB = 2 \angle ACB \implies 100^\circ = 2 \angle ACB$ *.*.. *.*... $\angle ACB = 50^{\circ}$
- **11.** Given, $\angle AOC = 130^{\circ}$

Reflex $\angle AOC = 360^{\circ} - \angle AOC$

 \Rightarrow Reflex $\angle AOC = 360^{\circ} - 130^{\circ} = 230^{\circ}$

We know that, the angle subtended by an arc at the centre is twice the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \quad \angle ABC = \frac{1}{2} \text{ (Reflex } \angle AOC)$$

$$=\frac{1}{2}\times230^\circ=115^\circ$$

- **12.** Given, circle C(O, r) and $OD \perp AB$.
- $\angle AOD = \angle BOD = 90^{\circ}$ ÷.

We know, angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of circle.

So,
$$\angle BOD = 2 \angle BAD$$

$$\Rightarrow \quad \angle BAD = \frac{1}{2} \ \angle BOD = \frac{1}{2} \ \times 90^{\circ} = 45^{\circ}$$

Similarly, $\angle AOD = 2 \angle ACD$

$$\Rightarrow \quad \angle ACD = \frac{1}{2} \angle AOD = \frac{1}{2} \times 90^\circ = 45^\circ$$

 $\angle ABD = 90^{\circ}$ [Angle in a semi-circle] $\angle ABC = 90^{\circ}$ [Angle in a semi-circle] So, $\angle ABD + \angle ABC = 90^\circ + 90^\circ = 180^\circ$ Therefore, *DBC* is a straight line. Thus, *B* lies on the line segment DC. **14.** $\angle ACB = \angle BDA$ [:: Angles in the same segment.] But, $\angle ACB = 40^{\circ}$ [Given] $\Rightarrow y = 40^{\circ}$ **15.** True Given, $\angle BAC = 45^{\circ}$ and $\angle BDC$ = 45°, which shows that angles in the same segment of a circle are equal. Thus, *A*, *B*, *C* and *D* are concyclic. **16.** Given, *ED* || *AC*, ∠*CBE* = 50° $\angle CBE = \angle 1$ [Angles in the same segment] ...(i) (:: $\angle CBE = 50^{\circ}$) *.*... $\angle 1 = 50^{\circ}$ $\angle AEC = 90^{\circ}$...(ii) [Angle in a semi-circle] Now, in $\triangle AEC$, $\angle 1 + \angle AEC + \angle 2 = 180^{\circ}$ [By Angle sum property of a triangle] $50^{\circ} + 90^{\circ} + \angle 2 = 180^{\circ}$ [From (i) and (ii)] $\angle 2 = 180^{\circ} - 140^{\circ}$ \Rightarrow $\Rightarrow \angle 2 = 40^{\circ}$...(iii) Now, ED || AC [Given] $\angle 2 = \angle 3$ [Alternate interior angles] *E* $\angle 3 = 40^{\circ}$ *i.e.*, $\angle CED = 40^{\circ}$ *.*... **17.** Since, *MAB* is a straight line. $\angle MAD + \angle DAB = 180^{\circ}$ ÷. $\angle DAB = 180^{\circ} - \angle MAD = 180^{\circ} - 110^{\circ}$ \Rightarrow $\therefore \ \angle DAB = 70^{\circ}$ Since, *ABCD* is a cyclic quadrilateral. $\angle BAD + \angle BCD = 180^{\circ}$ *.*.. $\angle BCD = 180^{\circ} - \angle BAD = 180^{\circ} - 70^{\circ} \Rightarrow \angle BCD = 110^{\circ}$ Now, *DCN* is a straight line. $\angle DCB + \angle BCN = 180^{\circ}$ *.*... $\angle BCN = 180^{\circ} - \angle DCB = 180^{\circ} - 110^{\circ}$ \Rightarrow $\angle BCN = 70^{\circ}$ *.*.. **18.** Since, *PSY* is a straight line. $\angle PSR + \angle RSY = 180^{\circ}$ *.*... $\angle PSR = 180^{\circ} - \angle RSY = 180^{\circ} - 74^{\circ}$ \Rightarrow $\angle PSR = 106^{\circ}$ ·.. ...(i) Now, Reflex $\angle POR = 2 \times \angle PSR$ [::Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle] Reflex $\angle POR = 2 \times 106^{\circ}$ [Using (i)] *.*... $= 212^{\circ}$

Circles

To prove : *P*, *Q*, *C* and *D* are concyclic.

Construction : Join PQ.

Proof : \therefore *A*, *P*, *Q* and *B* are four points lying on a circle.

 \therefore *APQB* is a cyclic quadrilateral.

 $\angle 1 = \angle A$ [Exterior angle property of a cyclic quadrilateral] But $\angle A = \angle C$ [Opposite angles of parallelogram *ABCD*] $\therefore \ \angle 1 = \angle C$... (i)

 $\Rightarrow \angle 1 + \angle D = 180^{\circ}$ Thus, the quadrilateral *QCDP* is cyclic. So, the points *P*, *Q*, *C* and *D* are concyclic.

[From (i)]

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information