Surface Areas and Volumes

EXERCISE - 13.2

1. Let r be the radius of the cylinder.

Here, height $(h)=14 \mathrm{~cm}$ and curved surface area $=88 \mathrm{~cm}^{2}$ Curved surface area of a cylinder $=2 \pi r h$
$\Rightarrow \quad 2 \pi r h=88 \Rightarrow 2 \times \frac{22}{7} \times r \times 14=88$
$\Rightarrow \quad r=\frac{88 \times 7}{2 \times 22 \times 14}=1 \mathrm{~cm}$
$\therefore \quad$ Diameter $=2 \times r=(2 \times 1) \mathrm{cm}=2 \mathrm{~cm}$
2. Here, height $(h)=1 \mathrm{~m}$

Diameter of the base $=140 \mathrm{~cm}=1.40 \mathrm{~m}$
$\therefore \quad$ Radius $(r)=\frac{1.40}{2}=0.70 \mathrm{~m}$
Total surface area of the cylinder $=2 \pi r(h+r)$
$=2 \times \frac{22}{7} \times 0.70(1+0.70)=2 \times 22 \times 0.10(1.70)$
$=44 \times \frac{17}{100}=\frac{748}{100}=7.48 \mathrm{~m}^{2}$
Hence, area of the required sheet is $7.48 \mathrm{~m}^{2}$
3. Length of the metal pipe $=77 \mathrm{~cm}$

It is in the form of a cylinder
$\therefore \quad$ Height (h) of the cylinder $=77 \mathrm{~cm}$ Inner diameter $=4 \mathrm{~cm}$
\Rightarrow Inner radius $(r)=\frac{4}{2}=2 \mathrm{~cm}$
Outer diameter $=4.4 \mathrm{~cm}$
\Rightarrow Outer radius $(R)=\frac{4.4}{2}=2.2 \mathrm{~cm}$
(i) Inner curved surface area $=2 \pi r h$
$=2 \times \frac{22}{7} \times 2 \times 77=968 \mathrm{~cm}^{2}$
(ii) Outer curved surface area $=2 \pi R h$
$=2 \times \frac{22}{7} \times 2.2 \times 77=\frac{10648}{10}=1064.8 \mathrm{~cm}^{2}$
(iii) Total surface area $=$ [Inner curved surface area] +
[Outer curved surface area] + [Surface area of two circular bases $]=(2 \pi r h)+(2 \pi R h)+\left[2 \pi\left(R^{2}-r^{2}\right)\right]$
$\left.=968+1064.8+2 \times \frac{22}{7}\left[(2.2)^{2}-(2)^{2}\right)\right]$
$=2032.8+\frac{2 \times 22 \times 0.84}{7}$
$=2032.8+5.28=2038.08 \mathrm{~cm}^{2}$
4. Diameter of roller $=84 \mathrm{~cm}$
$\Rightarrow \quad$ Radius of roller $=\frac{84}{2}=42 \mathrm{~cm}$

Length of the roller $=120 \mathrm{~cm}$
Curved surface area of the roller $=2 \pi r h$
$=2 \times \frac{22}{7} \times 42 \times 120=2 \times 22 \times 6 \times 120=31680 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of the playground levelled in one revolution by the roller $=31680 \mathrm{~cm}^{2}=\frac{31680}{10000} \mathrm{~m}^{2}$
$\therefore \quad$ Area levelled in 500 revolutions
$=500 \times \frac{31680}{10000}=\frac{5 \times 3168}{10}=1584 \mathrm{~m}^{2}$
5. Diameter of the pillar $=50 \mathrm{~cm}$
$\therefore \quad$ Radius $(r)=\frac{50}{2}=25 \mathrm{~cm}=\frac{1}{4} \mathrm{~m}$
and height $(h)=3.5 \mathrm{~m}$
Now, curved surface area of pillar $=2 \pi r h$
$=2 \times \frac{22}{7} \times \frac{1}{4} \times 3.50=\frac{44 \times 350}{7 \times 4 \times 100}=\frac{11}{2} \mathrm{~m}^{2}$
Cost of painting of $1 \mathrm{~m}^{2}$ area $=₹ 12.50$
$\therefore \quad$ Cost of painting of $\frac{11}{2} \mathrm{~m}^{2}$ area $=₹\left(\frac{11}{2} \times 12.50\right)$
$=₹ 68.75$.
6. Radius $(r)=0.7 \mathrm{~m}$

Let height of the cylinder be $h \mathrm{~m}$.
Curved surface area of a cylinder $=2 \pi r h$
$\Rightarrow \quad 2 \times \frac{22}{7} \times \frac{7}{10} \times h=4.4 \Rightarrow h=\frac{44}{10} \times \frac{7}{22} \times \frac{10}{7} \times \frac{1}{2}=1 \mathrm{~m}$
Thus, the required height is 1 m .
7. Inner diameter of the well $=3.5 \mathrm{~m}$
$\therefore \quad$ Radius of the well $=\frac{3.5}{2} \mathrm{~m}$
and height (h) of the well $=10 \mathrm{~m}$
(i) Inner curved surface area $=2 \pi r h=2 \times \frac{22}{7} \times \frac{3.5}{2} \times 10$ $=\frac{2 \times 22 \times 35 \times 10}{7 \times 2 \times 10}=110 \mathrm{~m}^{2}$
(ii) Cost of plastering per $\mathrm{m}^{2}=₹ 40$
$\therefore \quad$ Total cost of plastering the area of $110 \mathrm{~m}^{2}=₹(110 \times 40)$

$$
=₹ 4400
$$

8. Length of the cylindrical pipe $=28 \mathrm{~m}$
i.e., $h=28 \mathrm{~m}$

Diameter of the pipe $=5 \mathrm{~cm}$
$\therefore \quad$ Radius $(r)=\frac{5}{2} \mathrm{~cm}=\frac{5}{200} \mathrm{~m}$
Curved surface area of a cylinder $=2 \pi r h$
$=2 \times \frac{22}{7} \times \frac{5}{200} \times 28=\frac{22 \times 5 \times 4}{100}=\frac{440}{100}=4.4 \mathrm{~m}^{2}$
Thus, the total radiating surface is $4.40 \mathrm{~m}^{2}$.
9. The storage tank is in the form of a cylinder
$\therefore \quad$ Diameter of the tank $=4.2 \mathrm{~m}$
\Rightarrow Radius $(r)=\frac{4.2}{2}=2.1 \mathrm{~m}$ and height $(h)=4.5 \mathrm{~m}$ Now,
(i) Lateral (or curved) surface area $=2 \pi r h$
$=2 \times \frac{22}{7} \times 2.1 \times 4.5=2 \times 22 \times 0.3 \times 4.5=59.4 \mathrm{~m}^{2}$
(ii) Total surface area of the tank $=2 \pi r(r+h)$
$=2 \times \frac{22}{7} \times 2.1(2.1+4.5)=44 \times 0.3 \times 6.6=87.12 \mathrm{~m}^{2}$
Let actual area of the steel used be $x \mathrm{~m}^{2}$.
$\therefore \quad$ Area of steel that wasted $=\frac{1}{12} \times x=\frac{x}{12} \mathrm{~m}^{2}$
$\Rightarrow \quad$ Area of steel used $=x-\frac{x}{12}=\frac{12 x-x}{12}=\frac{11 x}{12} \mathrm{~m}^{2}$
$\Rightarrow \quad \frac{11 x}{12}=87.12 \Rightarrow x=\frac{8712}{100} \times \frac{12}{11}$
$\Rightarrow \quad x=\frac{104544}{1100} \Rightarrow x=95.04 \mathrm{~m}^{2}$
Thus, the required area of the steel that was actually used is $95.04 \mathrm{~m}^{2}$.
10. The lampshade is in the form of a cylinder, where radius $=\frac{20}{2}=10 \mathrm{~cm}$ and height $=30 \mathrm{~cm}$.
A margin of 2.5 cm is to be added to top and bottom
\therefore Total height of the cylinder, h
$=30 \mathrm{~cm}+2.5 \mathrm{~cm}+2.5 \mathrm{~cm}=35 \mathrm{~cm}$
Now, curved surface area $=2 \pi r h$
$=2 \times \frac{22}{7} \times 10 \times(35)=2 \times 22 \times 10 \times 5=2200 \mathrm{~cm}^{2}$
Thus, the required area of the cloth is $2200 \mathrm{~cm}^{2}$.
11. Here, the penholders are in the form of cylinders

Radius of penholder $(r)=3 \mathrm{~cm}$
Height of penholder $(h)=10.5 \mathrm{~cm}$
Since, a penholder must be open from the top
Now, Surface area of a penholder (cylinder)
$=[$ Lateral surface area $]+[$ Base area $]=[2 \pi r h]+\pi r^{2}$
$=\left(2 \times \frac{22}{7} \times 3 \times 10.5\right)+\left(\frac{22}{7} \times 3 \times 3\right)$
$=(44 \times 3 \times 1.5)+\frac{198}{7}$
$=198+\frac{198}{7}=\frac{1386+198}{7}=\frac{1584}{7} \mathrm{~cm}^{2}$
$\therefore \quad$ Surface area of 35 penholders
$=35 \times \frac{1584}{7}=5 \times 1584=7920 \mathrm{~cm}^{2}$
Thus, $7920 \mathrm{~cm}^{2}$ of cardboard was required.

EXERCISE - 13.3

1. Here, diameter of the base of a cone $=10.5 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{10.5}{2} \mathrm{~cm}$
and Slant height $(l)=10 \mathrm{~cm}$
$\therefore \quad$ Curved surface area of the cone $=\pi r l$
$=\frac{22}{7} \times \frac{10.5}{2} \times 10=(11 \times 15 \times 1) \mathrm{cm}^{2}=165 \mathrm{~cm}^{2}$
2. Here, diameter $=24 \mathrm{~m}$ and slant height $(l)=21 \mathrm{~m}$
$\therefore \quad$ Radius $(r)=\frac{24}{2}=12 \mathrm{~m}$
$\therefore \quad$ Total surface area $=\pi r(r+l)$
$=\frac{22}{7} \times 12 \times(12+21)=\frac{22}{7} \times 12 \times 33$
$=\frac{8712}{7}=1244.57 \mathrm{~m}^{2}$ (approx.)
3. Here, curved surface area $=308 \mathrm{~cm}^{2}$

Slant height $(l)=14 \mathrm{~cm}$
(i) Let the radius of the base be ' r ' cm .

$$
\begin{aligned}
& \therefore \pi r l=308 \Rightarrow \frac{22}{7} \times r \times 14=308 \\
& \Rightarrow r=\frac{308 \times 7}{22 \times 14}=7 \mathrm{~cm}
\end{aligned}
$$

Thus, radius of the cone is 7 cm .
(ii) Base area $=\pi r^{2}=\frac{22}{7} \times 7^{2}=154 \mathrm{~cm}^{2}$ and curved surface area $=308 \mathrm{~cm}^{2}$
[Given]
$\therefore \quad$ Total surface area $=$ [Curved surface area]

+ [Base area]
$=(308+154) \mathrm{cm}^{2}=462 \mathrm{~cm}^{2}$

4. Here, height of the tent $(h)=10 \mathrm{~m}$

Radius of the base $(r)=24 \mathrm{~m}$
(i) The slant height, $l=\sqrt{r^{2}+h^{2}}$
$=\sqrt{24^{2}+10^{2}}=\sqrt{576+100}=\sqrt{676}=26 \mathrm{~m}$
Thus, the required slant height of the tent is 26 m .
(ii) Curved surface area of the cone $=\pi r l$
$\therefore \quad$ Area of the canvas required
$=\frac{22}{7} \times 24 \times 26=\frac{13728}{7} \mathrm{~m}^{2}$
Cost of $1 \mathrm{~m}^{2}$ canvas $=₹ 70$
\therefore Cost of $\frac{13728}{7} \mathrm{~m}^{2}$ canvas $=₹\left(70 \times \frac{13728}{7}\right)=₹ 137280$
5. Here, Base radius $(r)=6 \mathrm{~m}$; Height $(h)=8 \mathrm{~m}$
$\therefore \quad$ Slant height $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{6^{2}+8^{2}}$

$$
=\sqrt{36+64}=\sqrt{100}=10 \mathrm{~m}
$$

Now, curved surface area $=\pi r l=3.14 \times 6 \times 10=188.4 \mathrm{~m}^{2}$ Thus, area of the canvas (tarpaulin) required to make the tent $=188.4 \mathrm{~m}^{2}$

Let the length of the tarpaulin be $L \mathrm{~m}$.
$\therefore \quad$ Length \times breadth $=188.4$
$\Rightarrow L \times 3=188.4 \Rightarrow L=\frac{188.4}{3}=62.8 \mathrm{~m}$
Extra length of tarpaulin for margins $=20 \mathrm{~cm}$
$=\frac{20}{100} \mathrm{~m}=0.2 \mathrm{~m}$
Thus, total length of tarpaulin required
$=(62.8+0.2) \mathrm{m}=63 \mathrm{~m}$
6. Here, base radius $(r)=\frac{14}{2}=7 \mathrm{~m}$ and

Slant height $(l)=25 \mathrm{~m}$
$\therefore \quad$ Curved surface area $=\pi r l$
$=\frac{22}{7} \times 7 \times 25=22 \times 25=550 \mathrm{~m}^{2}$
Cost of white washing $100 \mathrm{~m}^{2}$ area $=₹ 210$
$\therefore \quad$ Cost of whitewashing $550 \mathrm{~m}^{2}$ area

$$
=₹\left(\frac{210}{100} \times 550\right)=₹ 1155
$$

7. Radius of the base $(r)=7 \mathrm{~cm}$ and height $(h)=24 \mathrm{~cm}$
So, slant height $(l)=\sqrt{24^{2}+7^{2}}=\sqrt{625}=25 \mathrm{~cm}$
Now, Lateral surface area $=\pi r l=\frac{22}{7} \times 7 \times 25=550 \mathrm{~cm}^{2}$
So, sheet required to make 1 cap $=550 \mathrm{~cm}^{2}$
$\therefore \quad$ Sheet required to make 10 such caps $=(10 \times 550) \mathrm{cm}^{2}$

$$
=5500 \mathrm{~cm}^{2}
$$

8. Diameter of the base $=40 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}=\frac{20}{100} \mathrm{~m}=0.2 \mathrm{~m}$
Height $(h)=1 \mathrm{~m}$
\Rightarrow Slant height $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{(0.2)^{2}+(1)^{2}}=\sqrt{1.04}$
$=1.02 \mathrm{~m}$
$[\sqrt{1.04}=1.02$ (Given) $]$
Now, curved surface area $=\pi r l$
$\therefore \quad$ Curved surface area of 1 cone
$=3.14 \times 0.2 \times 1.02=\left(\frac{314}{100} \times \frac{2}{10} \times \frac{102}{100}\right) \mathrm{m}^{2}$
\Rightarrow Curved surface area of 50 cones
$=50 \times\left[\frac{314}{100} \times \frac{2}{10} \times \frac{102}{100}\right]=\left(\frac{314 \times 102}{10 \times 100}\right) \mathrm{m}^{2}$
Cost of painting $1 \mathrm{~m}^{2}$ area $=₹ 12$
$\therefore \quad$ Cost of painting $\left[\frac{314 \times 102}{1000}\right] \mathrm{m}^{2}$ area
$=₹\left(\frac{12 \times 314 \times 102}{1000}\right)=₹ \frac{384336}{1000}$
= ₹ 384.336 = ₹ 384.34 (approx)
Thus, the required cost of painting is $₹ 384.34$ (approx).

EXERCISE - 13.4

1. (i) Here, $r=10.5 \mathrm{~cm}$
$\therefore \quad$ Surface area of a sphere $=4 \pi r^{2}$
$=4 \times \frac{22}{7} \times(10.5)^{2}=4 \times \frac{22}{7} \times \frac{105}{10} \times \frac{105}{10}=1386 \mathrm{~cm}^{2}$
(ii) Here, $r=5.6 \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(5.6)^{2}$
$=4 \times \frac{22}{7} \times \frac{56}{10} \times \frac{56}{10}=394.24 \mathrm{~cm}^{2}$
(iii) Here, $r=14 \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(14)^{2}$
$=4 \times \frac{22}{7} \times 14 \times 14=2464 \mathrm{~cm}^{2}$
2. (i) Here, Diameter $=14 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{14}{2}=7 \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times(7)^{2}$
$=4 \times \frac{22}{7} \times 7 \times 7=88 \times 7=616 \mathrm{~cm}^{2}$
(ii) Here, Diameter $=21 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{21}{2} \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times\left(\frac{21}{2}\right)^{2}$
$=4 \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}=1386 \mathrm{~cm}^{2}$
(iii) Here, Diameter $=3.5 \mathrm{~m}$
\Rightarrow Radius $(r)=\frac{3.5}{2} \mathrm{~m}=\frac{35}{20} \mathrm{~m}$
$\therefore \quad$ Surface area $=4 \pi r^{2}=4 \times \frac{22}{7} \times\left(\frac{35}{20}\right)^{2}$
$=4 \times \frac{22}{7} \times \frac{35}{20} \times \frac{35}{20}=38.5 \mathrm{~m}^{2}$
3. Here, radius $(r)=10 \mathrm{~cm}$

Total surface area of hemisphere $=3 \pi r^{2}$
$=3 \times 3.14 \times 10 \times 10=942 \mathrm{~cm}^{2}$
4. Case I : When radius $\left(r_{1}\right)=7 \mathrm{~cm}$

Surface area $=4 \pi r_{1}^{2}=4 \times \frac{22}{7} \times(7)^{2}=616 \mathrm{~cm}^{2}$
Case II : When radius $\left(r_{2}\right)=14 \mathrm{~cm}$
Surface area $=4 \pi r_{2}^{2}=4 \times \frac{22}{7} \times 14 \times 14=2464 \mathrm{~cm}^{2}$
$\therefore \quad$ Required ratio $=\frac{616}{2464}=\frac{1}{4}$
Hence, the required ratio is $1: 4$.
5. Inner diameter of the hemisphere $=10.5 \mathrm{~cm}$
\therefore Radius $(r)=\frac{10.5}{2} \mathrm{~cm}=\frac{105}{20} \mathrm{~cm}$
Curved surface area of a hemisphere $=2 \pi r^{2}$
$\therefore \quad$ Inner curved surface area of hemispherical bowl
$=2 \times \frac{22}{7} \times\left(\frac{105}{20}\right)^{2}=\frac{17325}{100} \mathrm{~cm}^{2}$
Cost of tin-plating $100 \mathrm{~cm}^{2}$ area $=₹ 16$
$\therefore \quad$ Cost of tin-plating $\frac{17325}{100} \mathrm{~cm}^{2}$ area
$=₹\left(\frac{16}{100} \times \frac{17325}{100}\right)=₹ 27.72$
6. Let the radius of the sphere be $r \mathrm{~cm}$.

Surface area $=4 \pi r^{2}$
$\Rightarrow 4 \pi r^{2}=154 \Rightarrow 4 \times \frac{22}{7} \times r^{2}=154$
$\Rightarrow r^{2}=\frac{154 \times 7}{4 \times 22}=\left(\frac{7}{2}\right)^{2} \Rightarrow r=\frac{7}{2}=3.5$
Thus, the required radius of the sphere is 3.5 cm .
7. Let the radius of the earth be r.
$\therefore \quad$ Radius of the moon $=\frac{r}{4}$
Surface area of a sphere $=4 \pi r^{2}$
Since, the earth as well as the moon are considered to be spheres.
$\therefore \quad$ Surface area of the earth $=4 \pi r^{2}$
and surface area of the moon $=4 \pi\left(\frac{r}{4}\right)^{2}$
$\therefore \frac{\text { Surface area of moon }}{\text { Surface area of earth }}=\frac{4 \pi\left(\frac{r}{4}\right)^{2}}{4 \pi r^{2}}=\frac{\left(\frac{r}{4}\right)^{2}}{r^{2}}=\frac{r^{2}}{16 r^{2}}=\frac{1}{16}$
Thus, the required ratio $=1: 16$.
8. Inner radius $(r)=5 \mathrm{~cm}$

Thickness $=0.25 \mathrm{~cm}$
$\therefore \quad$ Outer radius (R)
$=(5.00+0.25) \mathrm{cm}=5.25 \mathrm{~cm}$
\therefore Outer curved surface area of the bowl $=2 \pi R^{2}$

$=2 \times \frac{22}{7} \times(5.25)^{2}=173.25 \mathrm{~cm}^{2}$
9. (i) For the sphere radius $=r$
$\therefore \quad$ Surface area of the sphere $=4 \pi r^{2}$
(ii) For the right circular cylinder :

Radius of the cylinder $=$ Radius of the sphere
$\therefore \quad$ Radius of the cylinder $=r$
Height of the cylinder $=$ Diameter of the sphere
$\therefore \quad$ Height of the cylinder $(h)=2 r$
Since, curved surface area of the cylinder $=2 \pi r h$ $=2 \pi r(2 r)=4 \pi r^{2}$
(iii) $\frac{\text { Surface area of the sphere }}{\text { Surface area of the cylinder }}=\frac{4 \pi r^{2}}{4 \pi r^{2}}=\frac{1}{1}$

Thus, the required ratio is $1: 1$.

EXERCISE - 13.6

1. Let the base radius of the cylindrical vessel be $r \mathrm{~cm}$.

We have,
Circumference $=2 \pi r$
$\Rightarrow \quad 2 \pi r=132 \quad[\because$ Circumference $=132 \mathrm{~cm}]$
$\Rightarrow \quad 2 \times \frac{22}{7} \times r=132 \Rightarrow r=\frac{132 \times 7}{2 \times 22}=21 \mathrm{~cm}$
Since height of the vessel $(h)=25 \mathrm{~cm}$
$\therefore \quad$ Volume of cylinder $=\pi r^{2} h=\frac{22}{7} \times 21 \times 21 \times 25$

$$
=34650 \mathrm{~cm}^{3}
$$

Capacity of the vessel $=$ volume of the vessel $=34650 \mathrm{~cm}^{3}$
Since, $1000 \mathrm{~cm}^{3}=1$ litre
$\Rightarrow \quad 34650 \mathrm{~cm}^{3}=\frac{34650}{1000} l=34.65 l$
Thus, the vessel can hold $34.65 l$ of water.
2. Inner diameter of the cylindrical pipe $=24 \mathrm{~cm}$
\Rightarrow Inner radius of the pipe $(r)=\frac{24}{2} \mathrm{~cm}=12 \mathrm{~cm}$
Outer diameter of the pipe $=28 \mathrm{~cm}$
\Rightarrow Outer radius of the pipe $(R)=\frac{28}{2} \mathrm{~cm}=14 \mathrm{~cm}$
Length of the pipe $(h)=35 \mathrm{~cm}$
$\therefore \quad$ Amount of wood (volume) in the pipe
$=$ Outer volume - Inner volume $=\pi R^{2} h-\pi r^{2} h$
$=\pi h(R+r)(R-r)$
$=\frac{22}{7} \times 35 \times(14+12) \times(14-12)=22 \times 5 \times 26 \times 2=5720 \mathrm{~cm}^{3}$
Mass of $1 \mathrm{~cm}^{3}$ of wood $=0.6 \mathrm{~g}$ [Given]
\Rightarrow Mass of $5720 \mathrm{~cm}^{3}$ of wood $=5720 \times 0.6 \mathrm{~g}=3432 \mathrm{~g}$
$=\frac{3432}{1000} \mathrm{~kg}=3.432 \mathrm{~kg}$
$[\because 1000 \mathrm{~g}=1 \mathrm{~kg}]$
Thus, the required mass of the pipe is 3.432 kg .
3. For rectangular pack

Length $(l)=5 \mathrm{~cm}$, Breadth $(b)=4 \mathrm{~cm}$
Height (h) $=15 \mathrm{~cm}$
Volume $=l \times b \times h=5 \times 4 \times 15=300 \mathrm{~cm}^{3}$
$\therefore \quad$ Capacity of the rectangular pack $=300 \mathrm{~cm}^{3}$
For cylindrical pack, base diameter $=7 \mathrm{~cm}$
$\therefore \quad$ Radius of the base $(r)=\frac{7}{2} \mathrm{~cm}$
Height $(h)=10 \mathrm{~cm}$
$\therefore \quad$ Volume $=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 10=11 \times 7 \times 5=385 \mathrm{~cm}^{3}$
$\therefore \quad$ Volume of the cylindrical pack $=385 \mathrm{~cm}^{3}$
So, the cylindrical pack has greater capacity by $85 \mathrm{~cm}^{3}$.
4. Height of the cylinder $(h)=5 \mathrm{~cm}$

Let the base radius of the cylinder be $r \mathrm{~cm}$.
(i) Lateral surface of the cylinder $=94.2 \mathrm{~cm}^{2}$
$\Rightarrow \quad 2 \pi r h=94.2 \Rightarrow 2 \times 3.14 \times r \times 5=\frac{942}{10}$
$\Rightarrow \quad \frac{10 \times 314}{100} \times r=\frac{942}{10} \Rightarrow r=\frac{471}{157}=3 \mathrm{~cm}$
Thus, the radius of the cylinder $=3 \mathrm{~cm}$
(ii) Volume of a cylinder $=\pi r^{2} h$
$\Rightarrow \quad$ Volume of the given cylinder $=3.14 \times(3)^{2} \times 5$ $=141.3 \mathrm{~cm}^{3}$
Thus, the required volume is $141.3 \mathrm{~cm}^{3}$.
5. (i) Total cost of painting $=₹ 2200$

Cost of painting $1 \mathrm{~m}^{2}=₹ 20$
$\therefore \quad$ Area $=\frac{\text { Total cost }}{\text { Cost of } 1 \mathrm{~m}^{2}}=\frac{2200}{20}=110 \mathrm{~m}^{2}$
\Rightarrow Inner curved surface of the vessel $=110 \mathrm{~m}^{2}$
(ii) Let r and h be the base radius and height of the cylindrical vessel.
Curved surface area of a cylinder $=2 \pi r h$
$\therefore \quad 2 \pi r h=110 \Rightarrow 2 \times \frac{22}{7} \times r \times 10=110$
[Given, height $=10 \mathrm{~m}$]
$\Rightarrow \quad r=\frac{110 \times 7}{2 \times 22 \times 10}=\frac{7}{4} \Rightarrow r=1.75 \mathrm{~m}$
$\therefore \quad$ The required radius of the base $=1.75 \mathrm{~m}$
(iii) Since, volume of a cylinder $=\pi r^{2} h$
\Rightarrow Volume (capacity) of the vessel
$=\frac{22}{7} \times\left(\frac{7}{4}\right)^{2} \times 10=\frac{385}{4}=96.25 \mathrm{~m}^{3}$
Since, $1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}=1000 \mathrm{l}=1 \mathrm{kl}$
$\therefore \quad 96.25 \mathrm{~m}^{3}=96.25 \mathrm{kl}$
Thus, the required volume $=96.25 \mathrm{kl}$
6. Capacity of the cylindrical vessel
$=15.4 l=15.4 \times 1000 \mathrm{~cm}^{3}$
$\left[\because 1 l=1000 \mathrm{~cm}^{3}\right]$
$=\frac{15.4 \times 1000}{1000000} \mathrm{~m}^{3}=\frac{15.4}{1000} \mathrm{~m}^{3} \quad\left[\because 1000000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}\right]$
Now, volume of the vessel $=\frac{15.4}{1000} \mathrm{~m}^{3}$
and height of the vessel $=1 \mathrm{~m}$
Let radius of the base of the vessel be $r \mathrm{~m}$.
Now, Volume $=\pi r^{2} h \Rightarrow \pi r^{2} h=\frac{15.4}{1000}$
$\Rightarrow \quad \frac{22}{7} \times r^{2} \times 1=\frac{154}{10000} \Rightarrow r^{2}=\frac{154}{10000} \times \frac{7}{22}=\frac{49}{10000}$
$\Rightarrow \quad r^{2}=\left(\frac{7}{100}\right)^{2} \Rightarrow r=\frac{7}{100} \mathrm{~m}$
Now, total surface area of the cylindrical vessel
$=2 \pi r(h+r)=2 \times \frac{22}{7} \times \frac{7}{100}\left(1+\frac{7}{100}\right)$
$=\frac{44}{100} \times\left(1+\frac{7}{100}\right)=0.4708$
Thus, $0.4708 \mathrm{~m}^{2}$ sheet is required.
7. Since, $10 \mathrm{~mm}=1 \mathrm{~cm}$
$\therefore \quad 1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}$
For graphite cylinder,
Diameter $=1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{1}{10} \times \frac{1}{2}=\frac{1}{20} \mathrm{~cm}$
Length $(h)=14 \mathrm{~cm}$
$\therefore \quad$ Volume $=\pi r^{2} h$
$=\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times 14=0.11$
Thus, the required volume of the graphite
 $=0.11 \mathrm{~cm}^{3}$
Now, diameter of the pencil $=7 \mathrm{~mm}=\frac{7}{10} \mathrm{~cm}$
$\therefore \quad$ Radius of the pencil $(R)=\frac{7}{20} \mathrm{~cm}$
Height of the pencil $(h)=14 \mathrm{~cm}$
Volume of the pencil $=\pi R^{2} h$
$=\frac{22}{7} \times\left(\frac{7}{20}\right)^{2} \times 14=\frac{22}{7} \times \frac{7}{20} \times \frac{7}{20} \times 14$
$=\frac{11 \times 7 \times 7}{100}=5.39 \mathrm{~cm}^{3}$
Volume of the wood = Volume of the pencil

- Volume of the graphite

$=5.39 \mathrm{~cm}^{3}-0.11 \mathrm{~cm}^{3}=5.28 \mathrm{~cm}^{3}$
Thus, the required volume of the wood is $5.28 \mathrm{~cm}^{3}$
8. Diameter of the base of cylindrical bowl $=7 \mathrm{~cm}$
\Rightarrow Radius of the base $(r)=\frac{7}{2} \mathrm{~cm}$ and height $(h)=4 \mathrm{~cm}$
$\therefore \quad$ Volume of one bowl $=\pi r^{2} h$
$=\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 4=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 4$
$=11 \times 7 \times 2=154 \mathrm{~cm}^{3}$
i.e., Volume of soup in a bowl $=154 \mathrm{~cm}^{3}$
\Rightarrow Volume of soup in 250 bowls $=250 \times 154 \mathrm{~cm}^{3}$
$=38500 \mathrm{~cm}^{3}=\frac{38500}{1000} l=38.5 l \quad\left[\because 1 \mathrm{~cm}^{3}=\frac{1}{1000} l\right]$
Thus, the hospital needs to prepare 38.5 litres of soup daily for 250 patients.

EXERCISE - 13.7

1. (i) Radius of the cone $(r)=6 \mathrm{~cm}$

Height (h) $=7 \mathrm{~cm}$
$\therefore \quad$ Volume $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 6 \times 6 \times 7$
$=22 \times 2 \times 6=264 \mathrm{~cm}^{3}$
(ii) Here, radius of the cone $(r)=3.5 \mathrm{~cm}=\frac{35}{10} \mathrm{~cm}$

Height $(h)=12 \mathrm{~cm}$
$\therefore \quad$ Volume of the cone $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times\left(\frac{35}{10}\right)^{2} \times 12=\frac{1}{3} \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \times 12=154 \mathrm{~cm}^{3}$
2. (i) Here, $r=7 \mathrm{~cm}$ and $l=25 \mathrm{~cm}$
$\therefore h=\sqrt{l^{2}-r^{2}}=\sqrt{25^{2}-7^{2}}=\sqrt{625-49}=24 \mathrm{~cm}$
Now, volume of the conical vessel $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 24=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24$
$=22 \times 7 \times 8=1232 \mathrm{~cm}^{3}$
$=\frac{1232}{1000} l=1.232 l$
$\left[\because 1000 \mathrm{~cm}^{3}=1 \mathrm{l}\right]$
Thus, the required capacity of the conical vessel is $1.232 l$.
(ii) Here, height $(h)=12 \mathrm{~cm}$ and $l=13 \mathrm{~cm}$
$\therefore \quad r=\sqrt{l^{2}-h^{2}}=\sqrt{13^{2}-12^{2}}=\sqrt{169-144}=5 \mathrm{~cm}$
Now, volume of the conical vessel $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12$
$=\frac{22 \times 5 \times 5 \times 4}{7}=\frac{2200}{7} \mathrm{~cm}^{3}=\frac{2200}{7 \times 1000} l\left[\because 1000 \mathrm{~cm}^{3}=1 l\right]$
Thus, the required capacity of the conical vessel is $\frac{11}{35} l$.
3. Here, height of the cone $(h)=15 \mathrm{~cm}$

Volume of the cone $=1570 \mathrm{~cm}^{3}$
[Given]
Let the radius of the base be $r \mathrm{~cm}$.
$\therefore \quad \frac{1}{3} \pi r^{2} h=1570$
$\Rightarrow \quad \frac{1}{3} \times 3.14 \times r^{2} \times 15=1570 \Rightarrow \frac{1}{3} \times \frac{314}{100} \times r^{2} \times 15=1570$
$\Rightarrow \quad r^{2}=\frac{1570 \times 3 \times 100}{314 \times 15}=\frac{5 \times 3 \times 100}{15}=100$
$\Rightarrow r^{2}=10^{2} \Rightarrow r=\sqrt{10^{2}}=10 \mathrm{~cm}$
Thus, the required radius of the base is 10 cm .
4. Volume of the cone $=48 \pi \mathrm{~cm}^{3}$

Height of the cone $(h)=9 \mathrm{~cm}$
Let r be its base radius.
$\therefore \quad \frac{1}{3} \pi r^{2} h=48 \pi \Rightarrow \frac{1}{3} \pi r^{2} \times 9=48 \pi$
$\Rightarrow r^{2}=\frac{48 \times \pi \times 3}{9 \times \pi}=16=4^{2} \Rightarrow r=\sqrt{4^{2}}=4 \mathrm{~cm}$
$\therefore \quad$ Diameter of the base of the cone $=2 \times 4=8 \mathrm{~cm}$
5. Here, diameter of the conical pit $=3.5 \mathrm{~m}$
$\therefore \quad$ Radius $(r)=\frac{3.5}{2}=\frac{35}{20} \mathrm{~m}$, Depth $(h)=12 \mathrm{~m}$
$\therefore \quad$ Volume (capacity) $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times\left(\frac{35}{20}\right)^{2} \times 12=\frac{1}{3} \times \frac{22}{7} \times \frac{35}{20} \times \frac{35}{20} \times 12$
$=\frac{11 \times 35}{10}=\frac{385}{10}=38.5 \mathrm{~m}^{3}$
$\because \quad 1 \mathrm{~m}^{3}=1 \mathrm{kl} \Rightarrow 38.5 \mathrm{~m}^{3}=38.5 \mathrm{kl}$
Thus, the capacity of the conical pit is 38.5 kl .
6. Volume of the cone $=9856 \mathrm{~cm}^{3}$

Diameter of the base $=28 \mathrm{~cm}$
\Rightarrow Radius of the base $=\frac{28}{2}=14 \mathrm{~cm}$
(i) Let the height of the cone be $h \mathrm{~cm}$.
$\therefore \quad$ Volume $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(14)^{2} \times h$
$=\frac{1}{3} \times \frac{22}{7} \times 14 \times 14 \times h$
$\Rightarrow \frac{1}{3} \times 22 \times 2 \times 14 \times h=9856$
$\Rightarrow \quad h=\frac{9856 \times 3}{22 \times 2 \times 14}=16 \times 3=48$
Thus, the required height is 48 cm .
(ii) Let the slant height be $l \mathrm{~cm}$.
$\Rightarrow l^{2}=r^{2}+h^{2} \Rightarrow l^{2}=14^{2}+48^{2}=196+2304=2500=(50)^{2}$
$\therefore \quad l=50$
Thus, the required slant height $=50 \mathrm{~cm}$.
(iii) The curved surface area of a cone is given by $\pi r l$
\therefore Curved surface area $=\frac{22}{7} \times 14 \times 50=22 \times 2 \times 50=2200$
Thus, the curved surface area of the cone is $2200 \mathrm{~cm}^{2}$.
7. Sides of the right triangle are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm .
$=\frac{1}{3} \times \pi \times 5 \times 5 \times 12=100 \pi$

When this triangle is revolved about the side of 12 cm , we get a cone as shown in the figure. Thus, radius of the base of the cone so formed $(r)=5 \mathrm{~cm}$ Height $(h)=12 \mathrm{~cm}$
\therefore Volume of the cone so obtained
$=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \pi \times(5)^{2} \times 12$

[Given]

Thus, the required volume of the cone is $100 \pi \mathrm{~cm}^{3}$.
8. Since the right triangle is revolved about the side of 5 cm .
$\therefore \quad$ Height of the cone so obtained $(h)=5 \mathrm{~cm}$
Radius of the cone $(r)=12 \mathrm{~cm}$
$\therefore \quad$ Volume $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \pi \times(12)^{2} \times 5$
$=\frac{1}{3} \times \pi \times 12 \times 12 \times 5$

$=\pi \times 240=240 \pi \mathrm{~cm}^{3}$
Now, ratio of two volumes $=\frac{100 \pi \mathrm{~cm}^{3}}{240 \pi \mathrm{~cm}^{3}}=\frac{5}{12}=5: 12$
Thus, the required ratio is $5: 12$.
9. Here, the heap of wheat is in the form of a cone with base diameter $=10.5 \mathrm{~m}$
$\therefore \quad$ Base radius $(r)=\frac{10.5}{2} \mathrm{~m}=\frac{105}{20} \mathrm{~m}$
Height (h) $=3 \mathrm{~m}$
$\therefore \quad$ Volume of the heap $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times\left(\frac{105}{20}\right)^{2} \times 3=86.625$
Thus, the required volume $=86.625 \mathrm{~m}^{3}$
Now the area of the canvas to cover the heap must be equal to the curved surface area of the conical heap.
$\therefore \quad$ Area of the canvas $=\pi r l$, where $l=\sqrt{r^{2}+h^{2}}$
$\therefore l=\sqrt{\left(\frac{105}{20}\right)^{2}+3^{2}}=\sqrt{\frac{11025}{400}+9}$
$=\sqrt{36.5625}=6.05 \mathrm{~m}$ (approx.)
Now, $\pi r l=\frac{22}{7} \times \frac{105}{20} \times 6.05=11 \times 1.5 \times 6.05=99.825 \mathrm{~m}^{2}$
Thus, the required area of the canvas is $99.825 \mathrm{~m}^{2}$.

EXERCISE - 13.8

1. (i) Here, radius $(r)=7 \mathrm{~cm}$
$\therefore \quad$ Volume of the sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times(7)^{3}=\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7=\frac{4312}{3}=1437 \frac{1}{3} \mathrm{~cm}^{3}$
Thus, the required volume $=1437 \frac{1}{3} \mathrm{~cm}^{3}$
(ii) Here, radius $(r)=0.63 \mathrm{~m}$
$\therefore \quad$ Volume of the sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{63}{100}\right)^{3}=\frac{4}{3} \times \frac{22}{7} \times \frac{63}{100} \times \frac{63}{100} \times \frac{63}{100}$
$=\frac{1047816}{1000000}=1.047816 \mathrm{~m}^{3}$
Thus, the required volume is $1.05 \mathrm{~m}^{3}$ (approx.)
2. (i) Diameter of the ball $=28 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{28}{2}=14 \mathrm{~cm}$
$\therefore \quad$ Volume $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times(14)^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times 14 \times 14 \times 14=\frac{34496}{3}=11498 \frac{2}{3} \mathrm{~cm}^{3}$
Thus, the amount of water displaced $=11498 \frac{2}{3} \mathrm{~cm}^{3}$
(ii) Diameter of the ball $=0.21 \mathrm{~m}$
\Rightarrow Radius $(r)=\frac{0.21}{2}=\frac{21}{200} \mathrm{~m}$
$\therefore \quad$ Volume $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{21}{200}\right)^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times \frac{21}{200} \times \frac{21}{200} \times \frac{21}{200}$
$=\frac{11 \times 21 \times 21}{1000000}=\frac{4851}{1000000}=0.004851 \mathrm{~m}^{3}$
3. Diameter of a metallic ball $=4.2 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{4.2}{2}=2.1 \mathrm{~cm}$
$\therefore \quad$ Volume of the metallic ball
$=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times(2.1)^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times \frac{21}{10} \times \frac{21}{10} \times \frac{21}{10}=\frac{4 \times 22 \times 21 \times 21}{10 \times 10 \times 10} \mathrm{~cm}^{3}$
Also, density of the metal $=8.9 \mathrm{~g}$ per cm^{3}
[Given]
$\therefore \quad$ Mass of the ball $=8.9 \times$ [Volume of the ball]
$=\frac{89}{10} \times \frac{4 \times 22 \times 21 \times 21}{10 \times 10 \times 10}=\frac{3453912}{10000}=345.3912 \mathrm{~g}$
$=345.39 \mathrm{~g}$ (approx.)
Thus, the mass of the ball is 345.39 g (approx.)
4. Let radius of the earth $=r$

Diameter of the moon $=\frac{1}{4}($ Diameter of theearth $)$ [Given]
\Rightarrow Radius of the moon $=\frac{1}{4}$ (Radius of theearth)
\Rightarrow Radius of the moon $=\frac{1}{4}(r)=\frac{r}{4}$
Volume of the earth $=\frac{4}{3} \pi r^{3}$
Volume of the moon $=\frac{4}{3} \pi\left(\frac{r}{4}\right)^{3}=\frac{4}{3} \times \pi \times \frac{r \times r \times r}{4 \times 4 \times 4}=\frac{\pi r^{3}}{48}$

Now, $\frac{\text { Volume of the earth }}{\text { Volume of the moon }}=\frac{\frac{4}{3} \pi r^{3}}{\frac{\pi r^{3}}{48}}=\frac{4}{3} \pi r^{3} \times \frac{48}{\pi r^{3}}=\frac{64}{1}$
or Volume of the moon $=\frac{1}{64} \times$ Volume of the earth
\therefore The required fraction is $\frac{1}{64}$.
5. Diameter of the hemisphere $=10.5 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{10.5}{2}=\frac{105}{20} \mathrm{~cm}$
Volume of the hemispherical
bowl $=\frac{2}{3} \pi r^{3}$
$=\frac{2}{3} \times \frac{22}{7} \times \frac{105}{20} \times \frac{105}{20} \times \frac{105}{20}$
$=\frac{11 \times 105 \times 105}{20 \times 20}=303.1875 \mathrm{~cm}^{3}$

$\therefore \quad$ Capacity of the hemispherical bowl $=303.1875 \mathrm{~cm}^{3}$
$=\frac{3031875}{10000 \times 1000} l=0.3031875 l \quad\left[\because 1000 \mathrm{~cm}^{3}=1 l\right]$
$=0.303 l$ (approx.)
Thus, the capacity of the bowl is $0.303 l$ (approx.).
6. Inner radius $(r)=1 \mathrm{~m}$
$\because \quad$ Thickness $=1 \mathrm{~cm}=\frac{1}{100} \mathrm{~m}=0.01 \mathrm{~m}$
$\therefore \quad$ Outer radius $(R)=1+0.01=1.01 \mathrm{~m}$
Now, volume of outer
hemispherical bowl
$=\frac{2}{3} \pi R^{3}=\frac{2}{3} \times \frac{22}{7} \times(1.01)^{3}$
Volume of inner
hemispherical bowl
$=\frac{2}{3} \pi r^{3}=\frac{2}{3} \times \frac{22}{7} \times(1)^{3}$
$\therefore \quad$ Volume of the iron used $=$ [Outer volume]

- [Inner volume]
$=\frac{2}{3} \times \frac{22}{7} \times(1.01)^{3}-\frac{2}{3} \times \frac{22}{7} \times(1)^{3}$
$=\frac{2}{3} \times \frac{22}{7} \times\left[(1.01)^{3}-(1)^{3}\right]$
$=\frac{44}{21}(1.030301-1)=0.06348 \mathrm{~m}^{3}$ (approx.)
Thus, the required volume of the iron is $0.06348 \mathrm{~m}^{3}$.

7. Let r be the radius of the sphere.
$\therefore \quad$ Its surface area $=4 \pi r^{2} \Rightarrow 4 \pi r^{2}=154$
$\Rightarrow \quad r^{2}=\frac{154}{4 \pi}=\frac{154 \times 7}{4 \times 22}=\frac{7 \times 7}{4} \Rightarrow r^{2}=\left(\frac{7}{2}\right)^{2} \Rightarrow r=\frac{7}{2} \mathrm{~cm}$
Now, volume of the sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{3}=\frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}$
$=\frac{11 \times 7 \times 7}{3}=\frac{539}{3}=179 \frac{2}{3} \mathrm{~cm}^{3}$
Thus, the required volume of the sphere is $179 \frac{2}{3} \mathrm{~cm}^{3}$.
8. (i) Total cost of white washing $=₹ 4989.60$

Cost of white washing of $1 \mathrm{~m}^{2}$ area $=₹ 20$
$\therefore \quad$ Inside surface area of the dome
$=\frac{\text { Total cost }}{\text { Cost of } 1 \mathrm{~m}^{2} \text { area }}=\frac{4989.6}{20}=249.48 \mathrm{~m}^{2}$
Thus, the required inside surface area of the dome is $249.48 \mathrm{~m}^{2}$
(ii) Let r be the radius of the hemispherical dome
$\therefore \quad$ Surface area $=2 \pi r^{2}$
$\Rightarrow 2 \pi r^{2}=249.48 \Rightarrow 2 \times \frac{22}{7} \times r^{2}=\frac{24948}{100}$
$\Rightarrow \quad r^{2}=\frac{24948}{100} \times \frac{7}{2 \times 22}=\frac{3969}{100}$
$\Rightarrow \quad r^{2}=\left(\frac{63}{10}\right)^{2} \Rightarrow r=\frac{63}{10}=6.3 \mathrm{~m}$
Volume of hemisphere $=\frac{2}{3} \pi r^{3}$
$\therefore \quad$ Volume of air in the dome $=\frac{2}{3} \times \frac{22}{7} \times(6.3)^{3}$
$=\frac{2}{3} \times \frac{22}{7} \times \frac{63}{10} \times \frac{63}{10} \times \frac{63}{10}=\frac{2 \times 22 \times 3 \times 63 \times 63}{1000}$
$=\frac{523908}{1000}=523.9 \mathrm{~m}^{3}$ (approx.)
Thus, the required volume of air inside the dome is $523.9 \mathrm{~m}^{3}$ (approx).
9. (i) Radius of small sphere $=r$
$\therefore \quad$ Its volume $=\frac{4}{3} \pi r^{3}$
Volume of 27 small spheres $=27 \times\left(\frac{4}{3} \pi r^{3}\right)$
Radius of the new sphere $=r^{\prime}$
$\therefore \quad$ Volume of the new sphere $=\frac{4}{3} \pi\left(r^{\prime}\right)^{3}$
Since, $\frac{4}{3} \pi\left(r^{\prime}\right)^{3}=27 \times \frac{4}{3} \pi r^{3} \Rightarrow\left(r^{\prime}\right)^{3}=\frac{27 \times \frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi}=27 r^{3}$
$\Rightarrow \quad\left(r^{\prime}\right)^{3}=(3 r)^{3} \Rightarrow r^{\prime}=3 r$
(ii) Surface area of small sphere $=4 \pi r^{2}$
$\Rightarrow S=4 \pi r^{2}$ and $S^{\prime}=4 \pi(3 r)^{2} \quad\left[\because r^{\prime}=3 r\right]$
Now, $\frac{S}{S^{\prime}}=\frac{4 \pi r^{2}}{4 \pi(3 r)^{2}}=\frac{4 \pi r^{2}}{4 \pi\left(9 r^{2}\right)}=\frac{1}{9}$

Thus, $S: S^{\prime}=1: 9$
10. Diameter of the spherical capsule $=3.5 \mathrm{~mm}$
\Rightarrow Radius $(r)=\frac{3.5}{2} \mathrm{~mm}$
$\therefore \quad$ Volume of the spherical capsule
$=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{35}{20}\right)^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times \frac{35}{20} \times \frac{35}{20} \times \frac{35}{20}=\frac{22 \times 35 \times 35}{3 \times 20 \times 20}$
$=\frac{26950}{1200}=22.45833 \mathrm{~mm}^{3}=22.46 \mathrm{~mm}^{3}$ (approx.)
Thus, the required quantity of medicine is $22.46 \mathrm{~mm}^{3}$ (approx.).

EXERCISE - 13.9

1. Here, diameter of sphere $=21 \mathrm{~cm}$
\Rightarrow Radius of sphere $(r)=\frac{21}{2} \mathrm{~cm}$
$\therefore \quad$ Surface area of sphere $=4 \pi r^{2}$
$\therefore \quad$ Surface area of 8 spheres $=8 \times 4 \times \frac{22}{7} \times\left(\frac{21}{2}\right)^{2}$
$=8 \times 22 \times 3 \times 21=11088 \mathrm{~cm}^{2}$
Now, radius of cylinder $\left(r_{1}\right)=1.5 \mathrm{~cm}$
Height of cylinder $(h)=7 \mathrm{~cm}$
Curved surface area of a cylinder $=2 \pi r_{1} h$
$\therefore \quad$ Curved surface area of 8 cylinders
$=8 \times 2 \times \frac{22}{7} \times 1.5 \times 7=528 \mathrm{~cm}^{2}$
Surface area of the top of 8 cylinders $=8 \pi r^{2}$
$=8 \times \frac{22}{7} \times(1.5)^{2}=56.57 \mathrm{~cm}^{2}$ (approx.)
\therefore Cost of painting
$=₹\left[(11088-56.57) \times \frac{25}{100}+528 \times \frac{5}{100}\right]$
$=₹\left[(11031.43) \times \frac{25}{100}+\frac{2640}{100}\right]=₹\left[\frac{275785.75}{100}+\frac{2640}{100}\right]$
$=₹\left[\frac{278425.75}{100}\right]=₹ 2784.25$
Hence, the cost of paint required $=₹ 2784.25$ (approx.)
2. Let the diameter of a sphere be d.

After decreasing, diameter of the sphere
$=d-\frac{25}{100} \times d=d-\frac{1}{4} d=\frac{3}{4} d$
Since, surface area of a sphere $=4 \pi r^{2}=\pi(2 r)^{2}=\pi d^{2}$
Surface area of sphere, when diameter of the sphere is
$\frac{3}{4} d=\pi\left(\frac{3}{4} d\right)^{2}=\frac{9 \pi}{16} d^{2}$
Now, percentage decrease in curved surface area

$$
=\frac{\pi d^{2}-\frac{9 \pi}{16} d^{2}}{\pi d^{2}} \times 100=\frac{16-9}{16} \times 100=\frac{7}{16} \times 100=43.75 \%
$$

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

