EXERCISE-1.1

1. Yes, zero is a rational number. Because 0 can be written in the form of p / q.
$0=0 / 1=\frac{0}{2}=\frac{0}{3}$ etc. Denominator q can also be taken as negative integer.
2. We have, $q_{1}=\frac{3+4}{2}=\frac{7}{2} ; 3<\frac{7}{2}<4$
$q_{2}=\frac{3+\frac{7}{2}}{2}=\frac{\frac{13}{2}}{2}=\frac{13}{4} \therefore 3<\frac{13}{4}<\frac{7}{2}<4$
$q_{3}=\frac{4+\frac{7}{2}}{2}=\frac{\frac{15}{2}}{2}=\frac{15}{4} \therefore 3<\frac{13}{4}<\frac{7}{2}<\frac{15}{4}<4$
$q_{4}=\frac{\frac{7}{2}+\frac{13}{4}}{2}=\frac{\frac{14+13}{4}}{2}=\frac{\frac{27}{4}}{2}=\frac{27}{8}$
$\therefore \quad 3<\frac{13}{4}<\frac{27}{8}<\frac{7}{2}<\frac{15}{4}<4$
$q_{5}=\frac{1}{2}\left(\frac{7}{2}+\frac{15}{4}\right)=\frac{1}{2}\left(\frac{14+15}{4}\right)=\frac{29}{8}$
$\therefore \quad 3<\frac{13}{4}<\frac{27}{8}<\frac{7}{2}<\frac{29}{8}<\frac{15}{4}<4$
$q_{6}=\frac{1}{2}\left(\frac{13}{4}+\frac{27}{8}\right)=\frac{1}{2}\left(\frac{26+27}{8}\right)=\frac{53}{16}$
$\therefore \quad 3<\frac{13}{4}<\frac{53}{16}<\frac{27}{8}<\frac{7}{2}<\frac{29}{8}<\frac{15}{4}<4$
Thus, the six rational numbers between 3 and 4 are

$$
\frac{7}{2}, \frac{13}{4}, \frac{15}{4}, \frac{27}{8}, \frac{29}{8} \text { and } \frac{53}{16}
$$

3. Since, we need to find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$, therefore, multiply the numerator and denominator of $\frac{3}{5}$ and $\frac{4}{5}$ by 6 .
$\therefore \quad \frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}$ and $\frac{4}{5}=\frac{4 \times 6}{5 \times 6}=\frac{24}{30}$
\therefore Five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$ are $\frac{19}{30}$, $\frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$
i.e., $\frac{18}{30}<\frac{19}{30}<\frac{20}{30}<\frac{21}{30}<\frac{22}{30}<\frac{23}{30}<\frac{24}{30}$.
4. (i) True, as the collection of all natural numbers and 0 is called whole numbers.
(ii) False, as negative integers are not whole numbers.
(iii) False, as rational numbers of the form p / q, where $q \neq 0$ and q does not divide p completely, are not whole numbers.

EXERCISE-1.2

1. (i) True; because all irrational numbers can be represented on numbers line. And we know that numbers which can be represented on number line are known as real numbers.
(ii) False; because negative numbers cannot be the square root of any natural number.
(iii) False; because rational numbers are also a part of real numbers.
2. No, if we take a positive integer say 9, its square root is 3 , which is a rational number.
3. Draw a line $X^{\prime} O X$ and take point A on it such that $O A=1$ unit. Draw $B A \perp O A$ such that $B A=1$ unit. Join $O B$. We get, $O B=\sqrt{O A^{2}+A B^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ units. Now, draw $B B_{1} \perp O B$ such that $B B_{1}=1$ unit. Join $O B_{1}$. We get, $O B_{1}=\sqrt{O B^{2}+B B_{1}^{2}}=\sqrt{(\sqrt{2})^{2}+1^{2}}=\sqrt{3}$ units. Next, draw $B_{1} B_{2} \perp O B_{1}$ such that $B_{1} B_{2}=1$ unit. Join $O B_{2}$. We get, $O B_{2}=\sqrt{O B_{1}^{2}+B_{1} B_{2}^{2}}=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{4}$ units. Again, draw $B_{2} B_{3} \perp O B_{2}$ such that $B_{2} B_{3}=1$ unit. Join $O B_{3}$. We get, $O B_{3}=\sqrt{O B_{2}^{2}+B_{2} B_{3}^{2}}=\sqrt{(\sqrt{4})^{2}+1^{2}}=\sqrt{5}$ units.

Take O as centre and OB_{3} as radius, draw an arc which cuts $O X$ at D. Point D represents the number $\sqrt{5}$ on number line.
4. Do it yourself.

EXERCISE - 1.3

1. (i) We have, $\frac{36}{100}=0.36$
$\therefore \quad$ The decimal expansion of $\frac{36}{100}$ is terminating.
(ii) On dividing 1 by 11 , we have

$$
\begin{aligned}
& 1 1 \longdiv { 1 . 0 0 0 0 0 0 } 0 . 0 9 0 9 0 9 \ldots \\
& \frac{-99}{100} \\
& \frac{-99}{100} \\
& \therefore \quad \frac{1}{11}= 0.090909 \ldots=0 . \overline{09}
\end{aligned}
$$

Thus, the given decimal expansion is non-terminating repeating.
(iii) We have, $4 \frac{1}{8}=\frac{33}{8}$

Now, $8 \longdiv { 3 3 . 0 0 0 (4 . 1 2 5 }$ $-\frac{32}{10}$ $\frac{-8}{20}$ -16

$$
\frac{-40}{0}
$$

$\therefore \quad 4 \frac{1}{8}=4.125$. Thus, the decimal expansion is terminating.
(iv) On dividing 3 by 13, we have

$1 3 \longdiv { 3 . 0 0 0 0 0 0 0 0 (0 . 2 3 0 7 6 9 2 3 \ldots }$ | -26 |
| ---: |
| 40 |
| -39 | $-\frac{39}{100}$ $\frac{-91}{90}$ $\begin{array}{r}-78 \\ \hline 120\end{array}$

- 117
$\begin{array}{r}30 \\ -26 \\ \hline 40 \\ -39 \\ \hline\end{array}$
$\therefore \quad 3 / 13=0.23076923 \ldots=0 . \overline{230769}$
Thus, the decimal expansion of $3 / 13$ is non-terminating repeating.
(v) On dividing 2 by 11, we have
$1 1 \longdiv { 2 . 0 0 0 0 (0 . 1 8 1 8 \ldots }$
$\frac{-11}{90}$
$\begin{array}{r}-88 \\ \hline 20\end{array}$
$\frac{-11}{90}$
$\begin{array}{r}-88 \\ \hline 2\end{array}$
$\therefore \quad \frac{2}{11}=0.1818 \ldots=0 . \overline{18}$

Thus, the decimal expansion of $2 / 11$ is non-terminating repeating.
(vi) Dividing 329 by 400, we have
$4 0 0 \longdiv { 3 2 9 . 0 0 0 0 (0 . 8 2 2 5 }$

$\begin{array}{r}900 \\ -800 \\ \hline 1000\end{array}$ $\frac{-800}{2000}$
$\frac{-2000}{0}$
$\therefore \quad \frac{329}{400}=0.8225$
Thus, the decimal expansion of $329 / 400$ is terminating.
2. We are given that $\frac{1}{7}=0 . \overline{142857}$
$\therefore \frac{2}{7}=2 \times \frac{1}{7}=2 \times(0 . \overline{142857})=0 . \overline{285714}$,
$\frac{3}{7}=3 \times \frac{1}{7}=3 \times(0 . \overline{142857})=0 . \overline{428571}$,
$\frac{4}{7}=4 \times \frac{1}{7}=4 \times(0 . \overline{142857})=0 . \overline{571428}$,
$\frac{5}{7}=5 \times \frac{1}{7}=5 \times(0 . \overline{142857})=0 . \overline{714285}$ and
$\frac{6}{7}=6 \times \frac{1}{7}=6 \times(0 . \overline{142857})=0 . \overline{857142}$
Thus, without actually doing the long division we can predict the decimal expansions of the given rational numbers.
3. (i) Let $x=0 . \overline{6}=0.6666 \ldots$

Multiplying (1) by 10, we get
$10 x=6.6666$...
Subtracting (1) from (2), we get

$$
\begin{equation*}
10 x-x=6.6666 \ldots-0.6666 \ldots \tag{2}
\end{equation*}
$$

$\Rightarrow \quad 9 x=6 \Rightarrow x=\frac{6}{9}=\frac{2}{3}$. Thus, $0 . \overline{6}=\frac{2}{3}$
(ii) Let $x=0.4 \overline{7}=0.4777 \ldots$

Multiplying (1) by 10, we get
$10 x=4.777$...
Subtracting (1) from (2), we get $10 x-x=4.777 \ldots-0.4777 \ldots$
$\Rightarrow 9 x=4.3 \Rightarrow x=\frac{43}{90}$. Thus, $0.4 \overline{7}=\frac{43}{90}$
(iii) Let $x=0 . \overline{001}=0.001001 \ldots$

Multiplying (1) by 1000, we get
$\Rightarrow 1000 x=1.001001 \ldots$
Subtracting (1) from (2), we get

$$
\begin{align*}
& 1000 x-x=(1.001 \ldots)-(0.001 \ldots) \tag{2}\\
\Rightarrow \quad & 999 x=1 \Rightarrow x=\frac{1}{999} \cdot \text { Thus, } 0 . \overline{001}=\frac{1}{999} \tag{1}
\end{align*}
$$

4. Let $x=0.99999$...

Multiplying (1) by 10, we get
$10 x=9.9999$...
Subtracting (1) from (2), we get $10 x-x=(9.9999 \ldots)-(0.9999 \ldots)$
$\Rightarrow \quad 9 x=9 \Rightarrow x=\frac{9}{9}=1$. Thus, $0.9999 \ldots=1$
As, $0.9999 \ldots$ goes on forever, there is no gap between 1 and $0.9999 \ldots$. . Hence, both are equal.
5. In $1 / 17$, the number of entries in the repeating block of digits is less than the divisor i.e., 17.
$\therefore \quad$ The maximum number of digits in the repeating block is 16 . To perform the long division, we have

$$
\begin{aligned}
& 1 7 \longdiv { 0 . 0 5 8 8 2 3 5 2 9 4 1 1 7 6 4 7 \ldots } \\
& \frac{1.0000000000000000}{\frac{85}{150}} \\
& \frac{-136}{\frac{140}{-136}} \\
& \frac{-34}{60} \\
& \frac{-51}{90} \\
& \frac{-85}{50} \\
& \frac{-34}{160} \\
& -\frac{153}{70} \\
& \frac{-68}{20} \\
& -\frac{17}{30} \\
& \frac{-17}{130} \\
& -\frac{119}{110} \\
& \frac{-102}{80} \\
& \frac{-68}{120} \\
& \frac{-119}{1}
\end{aligned}
$$

The remainder 1 is the same digit from which we started the division.
$\therefore \quad \frac{1}{17}=0 . \overline{0588235294117647}$
Thus, there are 16 digits in the repeating block in the decimal expansion of $1 / 17$. Hence, our answer is verified. 6. Let us look decimal expansion of the following rational numbers:
$\frac{3}{2}=\frac{3 \times 5}{2 \times 5}=\frac{15}{10}=1.5$
[Denominator $=2=2^{1}$]
$\frac{1}{5}=\frac{1 \times 2}{5 \times 2}=\frac{2}{10}=0.2$
[Denominator $=5=5^{1}$]
$\frac{7}{8}=\frac{7 \times 125}{8 \times 125}=\frac{875}{1000}=0.875$
[Denominator $=8=2^{3}$]
$\frac{8}{125}=\frac{8 \times 8}{125 \times 8}=\frac{64}{1000}=0.064 \quad\left[\right.$ Denominator $=125=5^{3}$]
$\frac{13}{20}=\frac{13 \times 5}{20 \times 5}=\frac{65}{100}=0.65 \quad\left[\right.$ Denominator $\left.=20=2^{2} \times 5^{1}\right]$
$\frac{17}{16}=\frac{17 \times 625}{16 \times 625}=\frac{10625}{10000}=1.0625 \quad$ [Denominator $=16=2^{4}$] We observe that the prime factorisation of q (i.e., denominator) has only powers of 2 or powers of 5 or powers of both.
7. $\sqrt{2}=1.414213562 \ldots ; \sqrt{3}=1.732050807 \ldots$;
$\sqrt{5}=2.236067977 \ldots$
8. To find irrational numbers, firstly we will divide 5 by 7 and 9 by 11 .
Now,

Thus, three irrational numbers between $0 . \overline{714285}$ and $0 . \overline{81}$ are $0.750750075000750 \ldots, 0.767076700767000767 \ldots$, $0.78080078008000780 .$.
9. (i) $\because 23$ is not a perfect square.
$\therefore \quad \sqrt{23}$ is an irrational number.
(ii) $\because 225=15 \times 15=15^{2} \therefore 225$ is a perfect square.

Thus, $\sqrt{225}$ is a rational number.
(iii) $\because 0.3796$ is a terminating decimal.
$\therefore \quad$ It is a rational number.
(iv) $7.478478 \ldots=7 . \overline{478}$. Since, $7 . \overline{478}$ is a non-terminating recurring (repeating) decimal.
$\therefore \quad$ It is a rational number.
(v) Since, 1.101001000100001... is a non-terminating, non-repeating decimal number.
$\therefore \quad$ It is an irrational number.

EXERCISE - 1.5

1. (i) We know that difference of a rational and an irrational number is always irrational.
$\therefore \quad 2-\sqrt{5}$ is an irrational number.
(ii) $(3+\sqrt{23})-\sqrt{23}=3+\sqrt{23}-\sqrt{23}=3$, which is a rational number.
(iii) Since, $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$, which is a rational number.
(iv) \because The quotient of rational and irrational number is an irrational number.
$\therefore \quad \frac{1}{\sqrt{2}}$ is an irrational number.
(v) \because Product of a rational and an irrational number is an irrational number.
$\therefore \quad 2 \pi$ is an irrational number.
2. (i) Wehave, $(3+\sqrt{3})(2+\sqrt{2})=2(3+\sqrt{3})+\sqrt{2}(3+\sqrt{3})$ $=6+2 \sqrt{3}+3 \sqrt{2}+\sqrt{6}$
(ii) We have, $(3+\sqrt{3})(3-\sqrt{3})=(3)^{2}-(\sqrt{3})^{2}$
$=3^{2}-3=9-3=6$
(iii) $(\sqrt{5}+\sqrt{2})^{2}=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2})$
$=5+2+2 \sqrt{10}=7+2 \sqrt{10}$
(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^{2}-(\sqrt{2})^{2}=5-2=3$
3. When we measure the length of a line with a scale or with any other device, we only get an approximate rational value, i.e., c and d both are irrational.
$\therefore \quad c / d$ is irrational and hence π is irrational. Thus, there is no contradiction in saying that π is irrational.
4. Draw a line segment $A B=9.3$ units and extend it to C such that $B C=1$ unit and $A C$ $=10.3$ units.
Find mid-point of $A C$
 and mark it as O. Draw a semicircle taking O as centre and $A O$ as radius, where $A O=\frac{A C}{2}=5.15$ units.
Draw $B D \perp A C$ and intersecting the semicircle at D.
In $\triangle O B D, B D^{2}=O D^{2}-O B^{2}$
$\Rightarrow \quad B D^{2}=(5.15)^{2}-(4.15)^{2}=(5.15+4.15)(5.15-4.15)$
$\Rightarrow B D=\sqrt{9.3}$ units.
To represent $\sqrt{9.3}$ units on the number line, let us treat the line $B C$ as the number line, with B as zero, C as 1 , and so on.
Draw an arc with centre B and radius $B D=\sqrt{9.3}$ units, which intersects the number line $B C$ (produced) at E.
$B D=B E=\sqrt{9.3}$ units
$\therefore \quad E$ represents $\sqrt{9.3}$
5. (i) $\frac{1}{\sqrt{7}}=\frac{1 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}}=\frac{\sqrt{7}}{7}$
(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}=\frac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6)}}$

$$
=\frac{(\sqrt{7}+\sqrt{6})}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}=\frac{(\sqrt{7}+\sqrt{6})}{7-6}=\sqrt{7}+\sqrt{6}
$$

(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{(\sqrt{5}-\sqrt{2})}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}$

$$
=\frac{(\sqrt{5}-\sqrt{2})}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}=\frac{(\sqrt{5}-\sqrt{2})}{5-2}=\frac{(\sqrt{5}-\sqrt{2})}{3}
$$

(iv) $\frac{1}{\sqrt{7}-2}=\frac{(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}$
$=\frac{(\sqrt{7}+2)}{(\sqrt{7})^{2}-(2)^{2}}=\frac{(\sqrt{7}+2)}{7-4}=\frac{\sqrt{7}+2}{3}$

EXERCISE - 1.6

1. (i) $\because 64=8 \times 8=8^{2}$
$\therefore \quad(64)^{1 / 2}=\left(8^{2}\right)^{1 / 2}=8^{2 \times 1 / 2} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$

$$
=8
$$

(ii) $\because 32=2 \times 2 \times 2 \times 2 \times 2=2^{5}$
$\therefore \quad(32)^{1 / 5}=\left(2^{5}\right)^{1 / 5}=2^{5 \times 1 / 5} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$

$$
=2
$$

(iii) $\because 125=5 \times 5 \times 5=5^{3}$
$\therefore \quad(125)^{1 / 3}=\left(5^{3}\right)^{1 / 3}=5^{3 \times 1 / 3} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$
2. (i) $\because 9=3 \times 3=3^{2}$
$\therefore \quad(9)^{3 / 2}=\left(3^{2}\right)^{3 / 2}=3^{2 \times 3 / 2} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$
(ii) $\because 32=2 \times 2 \times 2 \times 2 \times 2=2^{5}$
$\therefore \quad(32)^{2 / 5}=\left(2^{5}\right)^{2 / 5}=2^{5 \times 2 / 5} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$

$$
=2^{2}=4
$$

(iii) $\because 16=2 \times 2 \times 2 \times 2=2^{4}$
$\begin{aligned} \therefore \quad(16)^{3 / 4} & =\left(2^{4}\right)^{3 / 4}=2^{4 \times 3 / 4} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right] \\ & =2^{3}=8\end{aligned}$
(iv) $\because 125=5 \times 5 \times 5=5^{3}$
$\therefore \quad(125)^{-1 / 3}=\left(5^{3}\right)^{-1 / 3}=5^{3 \times(-1 / 3)} \quad\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$

$$
=5^{-1}=1 / 5
$$

$$
\left[\because a^{-n}=1 / a^{n}\right]
$$

3. (i) Since, $2^{2 / 3} \cdot 2^{1 / 5}=2^{2 / 3+1 / 5} \quad\left[\because a^{m} \cdot a^{n}=a^{m+n}\right]$

$$
=2^{13 / 15}
$$

(ii) $\left(\frac{1}{3^{3}}\right)^{7}=\left(3^{-3}\right)^{7}=3^{-3 \times 7}=3^{-21}=\frac{1}{3^{21}} \quad\left[\because a^{-n}=\frac{1}{a^{n}}\right]$
(iii) $\frac{11^{1 / 2}}{11^{1 / 4}}=11^{\frac{1}{2}} \div 11^{\frac{1}{4}}=11^{\frac{1}{2}-\frac{1}{4}}$
$\left[\because a^{m} \div a^{n}=a^{m-n}\right]$
$=11^{\frac{1}{4}}$
(iv) $\begin{aligned} 7^{1 / 2} \cdot 8^{1 / 2} & =(7 \times 8)^{1 / 2} \\ & =(56)^{1 / 2}\end{aligned}$

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

