EXERCISE-2.1

1. (i) Given polynomial can be written as $4 x^{2}-3 x+7 x^{0}$
Since exponent of variable in each term is a whole number.
$\therefore \quad 4 x^{2}-3 x+7$ is a polynomial in one variable.
(ii) Given polynomial can be written as $y^{2}+\sqrt{2} y^{0}$

Since exponent of variable in each term is a whole number.
$\therefore \quad y^{2}+\sqrt{2}$ is a polynomial in one variable.
(iii) Given polynomial can be written as $3 t^{1 / 2}+\sqrt{2} t$

Now, exponent of variable in first term is $\frac{1}{2}$ which is not a whole number.
$\therefore \quad 3 t^{1 / 2}+\sqrt{2} t$ is not a polynomial.
(iv) Given polynomial can be written as $y+2 \cdot y^{-1}$. Now, exponent of variable in second term is -1 which is not a whole number.
$\therefore \quad y+\frac{2}{y}$ is not a polynomial.
(v) $x^{10}+y^{3}+t^{50}$

Here, exponent of every variable is a whole number, but $x^{10}+y^{3}+t^{50}$ is a polynomial in x, y and t, i.e., in three variables. So, it is not a polynomial in one variable.
2. (i) In the given polynomial $2+x^{2}+x$, the coefficient of x^{2} is 1 .
(ii) In the given polynomial $2-x^{2}+x^{3}$, the coefficient of x^{2} is (-1).
(iii) In the given polynomial $\frac{\pi}{2} x^{2}+x$, the coefficient of x^{2} is $\pi / 2$.
(iv) In the given polynomial $\sqrt{2} x-1$, the coefficient of x^{2} is 0 .
3. (i) A binomial of degree 35 can be $3 x^{35}-4$.
(ii) A monomial of degree 100 can be $\sqrt{2} y^{100}$.
4. (i) The given polynomial is $5 x^{3}+4 x^{2}+7 x$. The highest power of the variable x is 3 . So, the degree of the polynomial is 3 .
(ii) The given polynomial is $4-y^{2}$. The highest power of the variable y is 2 . So, the degree of the polynomial is 2 .
(iii) The given polynomial is $5 t-\sqrt{7}$. The highest power of variable t is 1 . So, the degree of the polynomial is 1 .
(iv) Since, $3=3 x^{0}$
$\left[\because x^{0}=1\right]$
So, the degree of the polynomial is 0 .
5. (i) The degree of polynomial $x^{2}+x$ is 2 . So, it is a quadratic polynomial.
(ii) The degree of polynomial $x-x^{3}$ is 3 . So, it is a cubic polynomial.
(iii) The degree of polynomial $y+y^{2}+4$ is 2 . So, it is a quadratic polynomial.
(iv) The degree of polynomial $1+x$ is 1 . So, it is a linear polynomial.
(v) The degree of polynomial $3 t$ is 1 . So, it is a linear polynomial.
(vi) The degree of polynomial r^{2} is 2 . So, it is a quadratic polynomial.
(vii) The degree of polynomial $7 x^{3}$ is 3 . So, it is a cubic polynomial.

EXERCISE - 2.2

1. Let $p(x)=5 x-4 x^{2}+3$
(i) $p(0)=5(0)-4(0)^{2}+3=0-0+3=3$

Thus, the value of $5 x-4 x^{2}+3$ at $x=0$ is 3 .
(ii) $p(-1)=5(-1)-4(-1)^{2}+3=-5-4+3=-9+3=-6$

Thus, the value of $5 x-4 x^{2}+3$ at $x=-1$ is -6 .
(iii) $p(2)=5(2)-4(2)^{2}+3=10-4(4)+3$

$$
=10-16+3=-3
$$

Thus, the value of $5 x-4 x^{2}+3$ at $x=2$ is -3 .
2. (i) We have, $p(y)=y^{2}-y+1$.
$\therefore \quad p(0)=(0)^{2}-0+1=0-0+1=1$,
$p(1)=(1)^{2}-1+1=1-1+1=1$,
$p(2)=(2)^{2}-2+1=4-2+1=3$
(ii) We have, $p(t)=2+t+2 t^{2}-t^{3}$
$\therefore \quad p(0)=2+0+2(0)^{2}-(0)^{3}=2+0+0-0=2$,
$p(1)=2+1+2(1)^{2}-(1)^{3}=2+1+2-1=4$,
$p(2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$
(iii) We have, $p(x)=x^{3}$
$\therefore \quad p(0)=(0)^{3}=0, p(1)=(1)^{3}=1, p(2)=(2)^{3}=8$
(iv) We have, $p(x)=(x-1)(x+1)$
$p(0)=(0-1)(0+1)=-1 \times 1=-1$,
$p(1)=(1-1)(1+1)=(0)(2)=0$,
$p(2)=(2-1)(2+1)=(1)(3)=3$
3. (i) We have, $p(x)=3 x+1$
$\therefore \quad p\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0$.
So, $x=-\frac{1}{3}$ is a zero of $3 x+1$.
(ii) We have, $p(x)=5 x-\pi$
$\therefore \quad p\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-\pi=4-\pi \neq 0$
So, $x=\frac{4}{5}$ is not a zero of $5 x-\pi$.
(iii) We have, $p(x)=x^{2}-1$,
$p(1)=(1)^{2}-1=1-1=0$
So, $x=1$ is a zero of $x^{2}-1$.
Also, $p(-1)=(-1)^{2}-1=1-1=0$
So, $x=-1$ is also a zero of $x^{2}-1$.
(iv) We have, $p(x)=(x+1)(x-2)$
$p(-1)=(-1+1)(-1-2)=(0)(-3)=0$
So, $x=-1$ is a zero of $(x+1)(x-2)$.
Also, $p(2)=(2+1)(2-2)=(3)(0)=0$
So, $x=2$ is also a zero of $(x+1)(x-2)$.
(v) We have, $p(x)=x^{2} \Rightarrow p(0)=(0)^{2}=0$.

So, $x=0$ is a zero of x^{2}.
(vi) We have, $p(x)=l x+m$
$\therefore p\left(-\frac{m}{l}\right)=l\left(-\frac{m}{l}\right)+m=-m+m=0$.
So, $x=\left(-\frac{m}{l}\right)$ is a zero of $l x+m$.
(vii) We have, $p(x)=3 x^{2}-1$
$\therefore p\left(-\frac{1}{\sqrt{3}}\right)=3\left(-\frac{1}{\sqrt{3}}\right)^{2}-1=3\left(\frac{1}{3}\right)-1=1-1=0$
So, $x=\left(\frac{-1}{\sqrt{3}}\right)$ is a zero of $3 x^{2}-1$.
Also, $p\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1=3\left(\frac{4}{3}\right)-1=4-1=3 \neq 0$
So, $\frac{2}{\sqrt{3}}$ is not a zero of $3 x^{2}-1$.
(viii) We have, $p(x)=2 x+1$
$\therefore p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2 \neq 0$
So, $x=\frac{1}{2}$ is not a zero of $2 x+1$.
4. Finding zero of polynomial $p(x)$, is same as solving the polynomial equation $p(x)=0$.
(i) We have, $p(x)=x+5$.

Put $p(x)=0 \Rightarrow x+5=0 \Rightarrow x=-5$
Thus, zero of $x+5$ is -5 .
(ii) We have, $p(x)=x-5$.

Put $p(x)=0 \Rightarrow x-5=0 \Rightarrow x=5$
Thus, zero of $x-5$ is 5 .
(iii) We have, $p(x)=2 x+5$.

Put $p(x)=0 \Rightarrow 2 x+5=0 \Rightarrow 2 x=-5 \Rightarrow x=\frac{-5}{2}$
Thus, zero of $2 x+5$ is $-\frac{5}{2}$.
(iv) We have, $p(x)=3 x-2$.

Put $p(x)=0 \Rightarrow 3 x=2 \Rightarrow x=2 / 3$
Thus, zero of $3 x-2$ is $\frac{2}{3}$.
(v) We have, $p(x)=3 x$.

Put $p(x)=0 \Rightarrow 3 x=0 \Rightarrow x=0$
Thus, zero of $3 x$ is 0 .
(vi) We have, $p(x)=a x, a \neq 0$.

Put $p(x)=0 \Rightarrow a x=0 \Rightarrow x=0$
Thus, zero of $a x$ is 0 .
(vii) We have, $p(x)=c x+d, c \neq 0$

Put $p(x)=0 \Rightarrow c x+d=0 \Rightarrow c x=-d \Rightarrow x=-\frac{d}{c}$
Thus, zero of $c x+d$ is $-\frac{d}{c}$.

EXERCISE - 2.3

1. Let $p(x)=x^{3}+3 x^{2}+3 x+1$
(i) The zero of $(x+1)$ is -1 . So, by remainder theorem, $p(-1)$ is the remainder when $p(x)$ is divided by $x+1$.
$\therefore \quad p(-1)=(-1)^{3}+3(-1)^{2}+3(-1)+1$
$=-1+3-3+1=0$
Thus, the required remainder $=0$
(ii) The zero of $x-\frac{1}{2}$ is $\frac{1}{2}$.
$\therefore \quad p\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1$
$=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1=\frac{1+6+12+8}{8}=\frac{27}{8}$
Thus, the required remainder $=27 / 8$.
(iii) The zero of x is 0 .
$\therefore \quad p(0)=(0)^{3}+3(0)^{2}+3(0)+1=0+0+0+1=1$
Thus, the required remainder $=1$.
(iv) The zero of $x+\pi$ is $(-\pi)$.
$\therefore \quad p(-\pi)=(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1$
$=-\pi^{3}+3 \pi^{2}-3 \pi+1$
Thus, the required remainder is $-\pi^{3}+3 \pi^{2}-3 \pi+1$.
(v) The zero of $5+2 x$ is $\left(-\frac{5}{2}\right)$.
$\therefore p\left(-\frac{5}{2}\right)=\left(-\frac{5}{2}\right)^{3}+3\left(-\frac{5}{2}\right)^{2}+3\left(\frac{-5}{2}\right)+1$
$=\frac{-125}{8}+\frac{75}{4}-\frac{15}{2}+1=\frac{-27}{8}$
Thus, the required remainder is $\left(-\frac{27}{8}\right)$.
2. We have, $p(x)=x^{3}-a x^{2}+6 x-a$ and zero of $x-a$ is a.
$\therefore \quad p(a)=(a)^{3}-a(a)^{2}+6(a)-a$

$$
=a^{3}-a^{3}+6 a-a=5 a
$$

Thus, the required remainder $=5 a$
3. We have, $p(x)=3 x^{3}+7 x$ and zero of $7+3 x$ is $\frac{-7}{3}$.
$\therefore \quad p\left(\frac{-7}{3}\right)=3\left(\frac{-7}{3}\right)^{3}+7\left(\frac{-7}{3}\right)$
$=3\left(\frac{-343}{27}\right)+\left(\frac{-49}{3}\right)=-\frac{343}{9}-\frac{49}{3}=-\frac{490}{9}$
Since, $\left(\frac{-490}{9}\right) \neq 0$ i.e., the remainder is not 0 .
$\therefore \quad 3 x^{3}+7 x$ is not divisible by $7+3 x$.
Thus, $(7+3 x)$ is not a factor of $3 x^{3}+7 x$.

EXERCISE - 2.4

1. The zero of $x+1$ is -1 .
(i) Let $p(x)=x^{3}+x^{2}+x+1$
$\therefore \quad p(-1)=(-1)^{3}+(-1)^{2}+(-1)+1=-1+1-1+1=0$
$\because \quad p(-1)=0$, so by factor theorem, $(x+1)$ is a factor of $x^{3}+x^{2}+x+1$.
(ii) Let $p(x)=x^{4}+x^{3}+x^{2}+x+1$
$\therefore \quad p(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$
$=1-1+1-1+1=1$
$\because \quad p(-1) \neq 0$, so by factor theorem, $(x+1)$ is not a factor of $x^{4}+x^{3}+x^{2}+x+1$.
(iii) Let $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$
$\therefore \quad p(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$=1-3+3-1+1=1$
$\because \quad p(-1) \neq 0$, so by factor theorem, $(x+1)$ is not a factor of $x^{4}+3 x^{3}+3 x^{2}+x+1$.
(iv) Let $p(x)=x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$
$\therefore \quad p(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2}$
$=-1-1+2+\sqrt{2}+\sqrt{2}=-2+2+2 \sqrt{2}=2 \sqrt{2}$
$\because \quad p(-1) \neq 0$, so by factor theorem, $(x+1)$ is not a factor of $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$.
2. (i) We have, $p(x)=2 x^{3}+x^{2}-2 x-1$ and $g(x)=x+1$. Since zero of $x+1$ is -1 .
$\therefore \quad p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1=-2+1+2-1=0$
$\because \quad p(-1)=0$, so by factor theorem, $g(x)$ is a factor of $p(x)$.
(ii) We have, $p(x)=x^{3}+3 x^{2}+3 x+1$ and $g(x)=x+2$.

Since zero of $x+2$ is -2 .
$\therefore \quad p(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$

$$
=-8+12-6+1=-14+13=-1
$$

$\because \quad p(-2) \neq 0$, so by factor theorem, $g(x)$ is not a factor of $p(x)$.
(iii) We have, $p(x)=x^{3}-4 x^{2}+x+6$ and $g(x)=x-3$.

Since zero of $x-3$ is 3 .
$\therefore \quad p(3)=(3)^{3}-4(3)^{2}+3+6$

$$
=27-36+3+6=0
$$

$\because \quad p(3)=0$, so by factor theorem, $g(x)$ is a factor of $p(x)$.
3. Since $(x-1)$ is a factor of $p(x)$.
$\therefore \quad p(1)$ should be equal to 0 . [By factor theorem]
(i) Here, $p(x)=x^{2}+x+k$
$\therefore \quad p(1)=(1)^{2}+1+k=0 \Rightarrow k+2=0 \Rightarrow k=-2$.
(ii) Here, $p(x)=2 x^{2}+k x+\sqrt{2}$
$\therefore \quad p(1)=2(1)^{2}+k(1)+\sqrt{2}=0 \Rightarrow 2+k+\sqrt{2}=0$
$\Rightarrow k=-2-\sqrt{2}=-(2+\sqrt{2})$
(iii) Here, $p(x)=k x^{2}-\sqrt{2} x+1$
$\therefore \quad p(1)=k(1)^{2}-\sqrt{2}(1)+1=0 \Rightarrow k-\sqrt{2}+1=0$
$\Rightarrow k=\sqrt{2}-1$
(iv) Here, $p(x)=k x^{2}-3 x+k$
$\therefore \quad p(1)=k(1)^{2}-3(1)+k=0 \Rightarrow k-3+k=0$
$\Rightarrow 2 k-3=0 \Rightarrow k=3 / 2$.
4. (i) We have,
$12 x^{2}-7 x+1=12 x^{2}-4 x-3 x+1$
$=4 x(3 x-1)-1(3 x-1)=(3 x-1)(4 x-1)$
Thus, $12 x^{2}-7 x+1=(3 x-1)(4 x-1)$
(ii) We have, $2 x^{2}+7 x+3=2 x^{2}+x+6 x+3$
$=x(2 x+1)+3(2 x+1)=(2 x+1)(x+3)$
Thus, $2 x^{2}+7 x+3=(2 x+1)(x+3)$
(iii) We have, $6 x^{2}+5 x-6=6 x^{2}+9 x-4 x-6$
$=3 x(2 x+3)-2(2 x+3)=(2 x+3)(3 x-2)$
Thus, $6 x^{2}+5 x-6=(2 x+3)(3 x-2)$
(iv) We have, $3 x^{2}-x-4=3 x^{2}-4 x+3 x-4$
$=x(3 x-4)+1(3 x-4)=(3 x-4)(x+1)$
Thus, $3 x^{2}-x-4=(3 x-4)(x+1)$
5. (i) We have, $x^{3}-2 x^{2}-x+2$

Rearranging the terms, we have
$x^{3}-2 x^{2}-x+2=x^{3}-x-2 x^{2}+2$
$=x\left(x^{2}-1\right)-2\left(x^{2}-1\right)=\left(x^{2}-1\right)(x-2)$
$=\left[(x)^{2}-(1)^{2}\right](x-2)$
$=(x-1)(x+1)(x-2)$
Thus, $x^{3}-2 x^{2}-x+2=(x-1)(x+1)(x-2)$
(ii) We have, $x^{3}-3 x^{2}-9 x-5$
$=x^{3}+x^{2}-4 x^{2}-4 x-5 x-5$
$=x^{2}(x+1)-4 x(x+1)-5(x+1)$
$=(x+1)\left(x^{2}-4 x-5\right)=(x+1)\left(x^{2}-5 x+x-5\right)$
$=(x+1)[x(x-5)+1(x-5)]=(x+1)(x-5)(x+1)$
Thus, $x^{3}-3 x^{2}-9 x-5=(x+1)(x-5)(x+1)$
(iii) We have, $x^{3}+13 x^{2}+32 x+20$
$=x^{3}+x^{2}+12 x^{2}+12 x+20 x+20$
$=x^{2}(x+1)+12 x(x+1)+20(x+1)$
$=(x+1)\left(x^{2}+12 x+20\right)=(x+1)\left(x^{2}+2 x+10 x+20\right)$
$=(x+1)[x(x+2)+10(x+2)]=(x+1)(x+2)(x+10)$
Thus, $x^{3}+13 x^{2}+32 x+20=(x+1)(x+2)(x+10)$
(iv) We have, $2 y^{3}+y^{2}-2 y-1$
$=2 y^{3}-2 y^{2}+3 y^{2}-3 y+y-1$
$=2 y^{2}(y-1)+3 y(y-1)+1(y-1)$
$=(y-1)\left(2 y^{2}+3 y+1\right)=(y-1)\left(2 y^{2}+2 y+y+1\right)$
$=(y-1)[2 y(y+1)+1(y+1)]=(y-1)(y+1)(2 y+1)$
Thus, $2 y^{3}+y^{2}-2 y-1=(y-1)(y+1)(2 y+1)$
Note : We can also solve it by long division method also.

EXERCISE - 2.5

1. (i) We have, $(x+4)(x+10)$

Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$, we have
$(x+4)(x+10)=x^{2}+(4+10) x+(4 \times 10)=x^{2}+14 x+40$
(ii) We have, $(x+8)(x-10)$.

Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$, we have
$(x+8)(x-10)=x^{2}+[8+(-10)] x+[8 \times(-10)]$
$=x^{2}+(-2) x+(-80)=x^{2}-2 x-80$
(iii) We have, $(3 x+4)(3 x-5)$

Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$, we have
$(3 x+4)(3 x-5)=(3 x)^{2}+[4+(-5)] 3 x+[4 \times(-5)]$
$=9 x^{2}+(-1) 3 x+(-20)=9 x^{2}-3 x-20$
(iv) We have, $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

Using the identity $(a+b)(a-b)=a^{2}-b^{2}$, we have
$\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)=\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}=y^{4}-\frac{9}{4}$
(v) We have, $(3-2 x)(3+2 x)$

Using the identity, $(a+b)(a-b)=a^{2}-b^{2}$, we have
$(3-2 x)(3+2 x)=(3)^{2}-(2 x)^{2}=9-4 x^{2}$
2. (i) We have, $103 \times 107=(100+3)(100+7)$
$=(100)^{2}+(3+7) \times 100+(3 \times 7)$

$$
\left[\mathrm{Using}(x+a)(x+b)=x^{2}+(a+b) x+a b\right]
$$

$=10000+(10) \times 100+21$
$=10000+1000+21=11021$
(ii) We have, $95 \times 96=(100-5)(100-4)$
$=(100)^{2}+[(-5)+(-4)] \times 100+[(-5) \times(-4)]$
$\left[\right.$ Using $\left.(x+a)(x+b)=x^{2}+(a+b) x+a b\right]$
$=10000+(-9) \times 100+20$
$=10000+(-900)+20=9120$
(iii) We have, $104 \times 96=(100+4)(100-4)$
$=(100)^{2}-(4)^{2} \quad\left[U \operatorname{sing}(x+y)(x-y)=x^{2}-y^{2}\right]$
$=10000-16=9984$
3. (i) We have, $9 x^{2}+6 x y+y^{2}=(3 x)^{2}+2(3 x)(y)+(y)^{2}$
$=(3 x+y)^{2}=(3 x+y)(3 x+y)$
$\left[\right.$ Using $\left.a^{2}+2 a b+b^{2}=(a+b)^{2}\right]$
(ii) We have, $4 y^{2}-4 y+1$
$=(2 y)^{2}-2(2 y)(1)+(1)^{2}=(2 y-1)^{2}=(2 y-1)(2 y-1)$
[Using $a^{2}-2 a b+b^{2}=(a-b)^{2}$]
(iii) We have, $x^{2}-\frac{y^{2}}{100}=(x)^{2}-\left(\frac{y}{10}\right)^{2}$
$=\left(x+\frac{y}{10}\right)\left(x-\frac{y}{10}\right)$
$\left[\right.$ Using $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
4. We know that
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
(i) $(x+2 y+4 z)^{2}=(x)^{2}+(2 y)^{2}+(4 z)^{2}+2(x)(2 y)$

$$
+2(2 y)(4 z)+2(4 z)(x)
$$

$=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 z x$
(ii) $(2 x-y+z)^{2}=(2 x)^{2}+(-y)^{2}+(z)^{2}+2(2 x)(-y)$

$$
+2(-y)(z)+2(z)(2 x)
$$

$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 z x$
(iii) $(-2 x+3 y+2 z)^{2}=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}$

$$
+2(-2 x)(3 y)+2(3 y)(2 z)+2(2 z)(-2 x)
$$

$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 z x$
(iv) $(3 a-7 b-c)^{2}=(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+2(3 a)(-7 b)$
$+2(-7 b)(-c)+2(-c)(3 a)$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a$
(v) $(-2 x+5 y-3 z)^{2}=(-2 x)^{2}+(5 y)^{2}+(-3 z)^{2}$

$$
+2(-2 x)(5 y)+2(5 y)(-3 z)+2(-3 z)(-2 x)
$$

$=4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 z x$
(vi) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}=\left(\frac{1}{4} a\right)^{2}+\left(-\frac{1}{2} b\right)^{2}+(1)^{2}$

$$
+2\left(\frac{1}{4} a\right)\left(-\frac{1}{2} b\right)+2\left(-\frac{1}{2} b\right)(1)+2(1)\left(\frac{1}{4} a\right)
$$

$=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a$
5. We know that,
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
(i) Now, $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
$=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+2(2 x)(3 y)+2(3 y)(-4 z)+2(-4 z)(2 x)$
$=(2 x+3 y-4 z)^{2}=(2 x+3 y-4 z)(2 x+3 y-4 z)$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

$$
\begin{aligned}
=(-\sqrt{2} x)^{2}+(y)^{2}+(2 \sqrt{2} z)^{2} & +2(-\sqrt{2} x)(y) \\
+ & 2(2 \sqrt{2} z)(y)+2(2 \sqrt{2} z)(-\sqrt{2} x)
\end{aligned}
$$

$=(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}$
$=(-\sqrt{2} x+y+2 \sqrt{2} z)(-\sqrt{2} x+y+2 \sqrt{2} z)$
6. We know that, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y) \quad \ldots(1)$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
(i) $(2 x+1)^{3}=(2 x)^{3}+(1)^{3}+3(2 x)(1)(2 x+1)[B y(1)]$
$=8 x^{3}+1+6 x(2 x+1)=8 x^{3}+12 x^{2}+6 x+1$
(ii) $(2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-3(2 a)(3 b)(2 a-3 b) \quad[\mathrm{By}(2)]$
$=8 a^{3}-27 b^{3}-18 a b(2 a-3 b)=8 a^{3}-27 b^{3}-\left(36 a^{2} b-54 a b^{2}\right)$
$=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}$
(iii) $\left(\frac{3}{2} x+1\right)^{3}=\left(\frac{3}{2} x\right)^{3}+(1)^{3}+3\left(\frac{3}{2} x\right)(1)\left(\frac{3}{2} x+1\right) \quad[\mathrm{By}(1)]$ $=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left[\frac{3}{2} x+1\right]$
$=\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1$
(iv) $\left(x-\frac{2}{3} y\right)^{3}=x^{3}-\left(\frac{2}{3} y\right)^{3}-3(x)\left(\frac{2}{3} y\right)\left(x-\frac{2}{3} y\right) \quad[$ By (2) $]$
$=x^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right)$
$=x^{3}-\frac{8}{27} y^{3}-\left(2 x^{2} y-\frac{4}{3} x y^{2}\right)$
$=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}$
7. (i) We have,
$99^{3}=(100-1)^{3}=(100)^{3}-1^{3}-3(100)(1)(100-1)$
$=1000000-1-300(100-1)$
$=1000000-1-30000+300=970299$
(ii) We have, $102^{3}=(100+2)^{3}$
$=(100)^{3}+(2)^{3}+3(100)(2)(100+2)$
$=1000000+8+600(100+2)$
$=1000000+8+60000+1200=1061208$
(iii) We have, $(998)^{3}=(1000-2)^{3}$
$=(1000)^{3}-(2)^{3}-3(1000)(2)(1000-2)$
$=1000000000-8-6000(1000-2)$
$=1000000000-8-6000000+12000=994011992$
8. (i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
$=(2 a)^{3}+(b)^{3}+6 a b(2 a+b)$
$=(2 a)^{3}+(b)^{3}+3(2 a)(b)(2 a+b)$
$=(2 a+b)^{3}=(2 a+b)(2 a+b)(2 a+b)$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}=(2 a)^{3}-(b)^{3}-6 a b(2 a-b)$
$=(2 a)^{3}-(b)^{3}-3(2 a)(b)(2 a-b)$
$=(2 a-b)^{3}=(2 a-b)(2 a-b)(2 a-b)$
(iii) $27-125 a^{3}-135 a+225 a^{2}$
$=(3)^{3}-(5 a)^{3}-3(3)(5 a)(3-5 a)$
$=(3-5 a)^{3}=(3-5 a)(3-5 a)(3-5 a)$
(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
$=(4 a)^{3}-(3 b)^{3}-3(4 a)(3 b)(4 a-3 b)$
$=(4 a-3 b)^{3}=(4 a-3 b)(4 a-3 b)(4 a-3 b)$
(v) $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
$=(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)\left(\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)$
$=\left(3 p-\frac{1}{6}\right)^{3}=\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)$
9. (i) $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$\Rightarrow(x+y)^{3}-3(x+y)(x y)=x^{3}+y^{3}$
$\Rightarrow x^{3}+y^{3}=(x+y)\left[(x+y)^{2}-3 x y\right]$
$=(x+y)\left(x^{2}+y^{2}+2 x y-3 x y\right)$
$\Rightarrow \quad(x+y)\left(x^{2}+y^{2}-x y\right)=x^{3}+y^{3}$
(ii) $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\Rightarrow(x-y)^{3}+3 x y(x-y)=x^{3}-y^{3}$
$\Rightarrow \quad(x-y)\left[(x-y)^{2}+3 x y\right]=x^{3}-y^{3}$
$\Rightarrow \quad(x-y)\left(x^{2}+y^{2}-2 x y+3 x y\right)=x^{3}-y^{3}$
$\Rightarrow \quad(x-y)\left(x^{2}+y^{2}+x y\right)=x^{3}-y^{3}$
10. (i) We know that
$\left(x^{3}+y^{3}\right)=(x+y)\left(x^{2}-x y+y^{2}\right)$
We have, $27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}$
$=(3 y+5 z)\left[(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right]$
$=(3 y+5 z)\left(9 y^{2}-15 y z+25 z^{2}\right)$
(ii) We know that
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
We have, $64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3}$
$=(4 m-7 n)\left[(4 m)^{2}+(4 m)(7 n)+(7 n)^{2}\right]$
$=(4 m-7 n)\left(16 m^{2}+28 m n+49 n^{2}\right)$
11. We have, $27 x^{3}+y^{3}+z^{3}-9 x y z$
$=(3 x)^{3}+(y)^{3}+(z)^{3}-3(3 x)(y)(z)$
Using the identity, $x^{3}+y^{3}+z^{3}-3 x y z$
$=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
We have, $(3 x)^{3}+(y)^{3}+(z)^{3}-3(3 x)(y)(z)$
$=(3 x+y+z)\left[(3 x)^{2}+y^{2}+z^{2}-(3 x \times y)-(y \times z)-(z \times 3 x)\right]$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 z x\right)$
12. R.H.S. $=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
$=\frac{1}{2}(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)\right.$
$\left.+\left(z^{2}+x^{2}-2 x z\right)\right]$
$=\frac{1}{2}(x+y+z)\left[2\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)\right]$
$=2 \times \frac{1}{2} \times(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$=x^{3}+y^{3}+z^{3}-3 x y z=$ L.H.S.
13. Since, $x+y+z=0$
$\Rightarrow x+y=-z \Rightarrow(x+y)^{3}=(-z)^{3}$
$\Rightarrow x^{3}+y^{3}+3 x y(x+y)=-z^{3}$
$\Rightarrow x^{3}+y^{3}+3 x y(-z)=-z^{3} \quad[\because x+y=-z]$
$\Rightarrow x^{3}+y^{3}-3 x y z=-z^{3} \Rightarrow x^{3}+y^{3}+z^{3}=3 x y z$
Hence, if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$
14. (i) We have, $(-12)^{3}+(7)^{3}+(5)^{3}$

Let $x=-12, y=7$ and $z=5$.
Then, $x+y+z=-12+7+5=0$
We know that if $x+y+z=0$, then, $x^{3}+y^{3}+z^{3}=3 x y z$
$\therefore \quad(-12)^{3}+(7)^{3}+(5)^{3}=3[(-12)(7)(5)]=3[-420]=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Let $x=28, y=-15$ and $z=-13$. Then,
$x+y+z=28-15-13=0$
We know that if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$
$\therefore \quad(28)^{3}+(-15)^{3}+(-13)^{3}=3(28)(-15)(-13)$
$=3(5460)=16380$
15. Area of a rectangle $=($ Length $) \times($ Breadth $)$
(i) $25 a^{2}-35 a+12=25 a^{2}-20 a-15 a+12$
$=5 a(5 a-4)-3(5 a-4)=(5 a-4)(5 a-3)$
Thus, the possible length and breadth are $(5 a-3)$ and ($5 a-4$) respectively.
(ii) $35 y^{2}+13 y-12=35 y^{2}+28 y-15 y-12$
$=7 y(5 y+4)-3(5 y+4)=(5 y+4)(7 y-3)$
Thus, the possible length and breadth are $(7 y-3)$ and $(5 y+4)$.
16. Volume of a cuboid $=($ Length $) \times($ Breadth $) \times($ Height $)$
(i) Volume $=3 x^{2}-12 x$

We have, $3 x^{2}-12 x=3 x(x-4)=3 \times x \times(x-4)$
\therefore The possible dimensions of the cuboid are $3, x$ and $(x-4)$.
(ii) Volume $=12 k y^{2}+8 k y-20 k$

We have, $12 k y^{2}+8 k y-20 k$
$=4 \times k \times\left(3 y^{2}+2 y-5\right)=4 k\left[3 y^{2}-3 y+5 y-5\right]$
$=4 k[3 y(y-1)+5(y-1)]=4 k[(3 y+5) \times(y-1)]$
$=4 k \times(3 y+5) \times(y-1)$
Thus, the possible dimensions of the cuboid are $4 k$, $(3 y+5)$ and $(y-1)$.

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

