Linear Equations in Two Variables

EXERCISE - 4.1

EXERCISE - 4.2

1. Option (iii) is true. For every value of x, we get a corresponding value of y and vice-versa. Therefore, the linear equation has infinitely many solutions.
2. (i) $2 x+y=7$

When $x=0,2(0)+y=7 \quad \Rightarrow \quad 0+y=7 \Rightarrow y=7$
$\therefore \quad$ Solution is $(0,7)$.
When $x=1,2(1)+y=7 \Rightarrow y=7-2 \Rightarrow y=5$
$\therefore \quad$ Solution is $(1,5)$.
When $x=2,2(2)+y=7 \Rightarrow y=7-4 \Rightarrow y=3$
$\therefore \quad$ Solution is $(2,3)$.
When $x=3,2(3)+y=7 \Rightarrow y=7-6 \Rightarrow y=1$
\therefore Solution is $(3,1)$.
Thus, the four solutions are $(0,7),(1,5),(2,3)$ and $(3,1)$.
(ii) $\pi x+y=9$

When $x=0, \pi(0)+y=9 \Rightarrow y=9$
$\therefore \quad$ Solution is $(0,9)$.
When $x=1, \pi(1)+y=9 \Rightarrow y=9-\pi$
\therefore Solution is $(1,(9-\pi))$.
When $x=2, \pi(2)+y=9 \Rightarrow y=9-2 \pi$
$\therefore \quad$ Solution is $(2,(9-2 \pi))$.
When $x=-1, \pi(-1)+y=9 \Rightarrow-\pi+y=9 \Rightarrow y=9+\pi$
$\therefore \quad$ Solution is $(-1,(9+\pi))$.
Thus, the four solutions are $(0,9),(1,(9-\pi)),(2,(9-2 \pi))$ and $(-1,(9+\pi))$.
(iii) $x=4 y$

When $x=0,4 y=0 \Rightarrow y=0$
\therefore Solution is $(0,0)$.
When $x=1,4 y=1 \Rightarrow y=\frac{1}{4}$
\therefore Solution is $\left(1, \frac{1}{4}\right)$.
When $x=4,4=4 y \Rightarrow y=\frac{4}{4}=1 \Rightarrow y=1$
$\therefore \quad$ Solution is $(4,1)$.
When $x=-4,4 y=-4$
$\Rightarrow y=\frac{-4}{4}=-1 \Rightarrow y=-1$
$\therefore \quad$ Solution is $(-4,-1)$.

Thus, the four solutions are $(0,0),(1,1 / 4),(4,1)$ and $(-4,-1)$.
3. (i) $(0,2)$ means $x=0$ and $y=2$

Putting $x=0$ and $y=2$ in $x-2 y=4$, we get
L.H.S. $=0-2(2)=-4$. But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S.
$\therefore x=0, y=2$ is not a solution.
(ii) $(2,0)$ means $x=2$ and $y=0$

Putting $x=2$ and $y=0$ in $x-2 y=4$, we get
L.H.S. $=2-2(0)=2-0=2$. But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S.
$\therefore \quad(2,0)$ is not a solution.
(iii) $(4,0)$ means $x=4$ and $y=0$

Putting $x=4$ and $y=0$ in $x-2 y=4$, we get
L.H.S. $=4-2(0)=4-0=4=$ R.H.S.
$\therefore \quad(4,0)$ is a solution.
(iv) $(\sqrt{2}, 4 \sqrt{2})$ means $x=\sqrt{2}$ and $y=4 \sqrt{2}$

Putting $x=\sqrt{2}$ and $y=4 \sqrt{2}$ in $x-2 y=4$, we get
L.H.S. $=\sqrt{2}-2(4 \sqrt{2})=\sqrt{2}-8 \sqrt{2}=\sqrt{2}(1-8)=-7 \sqrt{2}$

But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S. $\therefore(\sqrt{2}, 4 \sqrt{2})$ is not a solution.
(v) $(1,1)$ means $x=1$ and $y=1$

Putting $x=1$ and $y=1$ in $x-2 y=4$, we get
L.H.S. $=1-2(1)=1-2=-1$. But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S. $\therefore(1,1)$ is not a solution.
4. We have $2 x+3 y=k$

Putting $x=2$ and $y=1$ in $2 x+3 y=k$, we get

$$
2(2)+3(1)=k \Rightarrow 4+3=k \Rightarrow 7=k
$$

Thus, the required value of k is 7 .

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

