Linear Equations in Two Variables

CHAPTER

TRY YOURSELF

SOLUTIONS

1. (i) We have, $2x + 3y = -5 \Rightarrow 2x + 3y + 5 = 0$ On comparing this equation with ax + by + c = 0, we get a = 2, b = 3 and c = 5

(ii) We have, $3x - \frac{y}{2} - 8 = 0 \implies 6x - y - 16 = 0$ [Multiplying both sides by 2]

On comparing this equation with ax + by + c = 0, we get a = 6, b = -1, c = -16

2. (i) 2x = -3 can be written as $2x + 0 \cdot y + 3 = 0$

(ii)
$$5x = \frac{7}{2}$$
 can be written as $5 \cdot x + 0 \cdot y - \frac{7}{2} = 0$

or $10x + 0 \cdot y - 7 = 0$

(iii)
$$y = \frac{3}{2}x$$
 can be written as $\frac{3}{2}x - y + 0 = 0$

or
$$3x - 2y + 0 = 0$$

3. Let cost of a ball pen = $\mathbf{E} \mathbf{x}$

and cost of a fountain pen = $\gtrless y$

Then, according to the given condition, we get Cost of a ball pen = Half of the cost of a fountain pen – 6

 $\Rightarrow x = \frac{y}{2} - 6 \Rightarrow x = \frac{y - 12}{2}$ $\Rightarrow 2x = y - 12 \Rightarrow 2x - y + 12 = 0,$

which is the required linear equation in two variables.

4. Let the cost of a note book be $\gtrless x$ and that of a pen be $\gtrless y$. Then, according to the given statement, we get

 $x = 3y \text{ or}, 1 \cdot x - 3y + 0 = 0$

5. Here, we can see that the cost of ticket neither to Agra nor to Mathura, is known. So, let cost of ticket to Agra from Delhi be $\overline{\mathbf{x}}$

and cost of ticket to Mathura from Delhi be $\gtrless y$ Then, according to the given condition, we get 2x + 3y = 440 6. Putting x = -3 and y = -2 in 2x - 7y + 8 = 0, we get L.H.S. = $2(-3) - 7(-2) + 8 = -6 + 14 + 8 = 16 \neq R.H.S$ So, (-3, -2) is not a solution of 2x - 7y + 8 = 0.

7. Putting $x = 2\sqrt{2}$ and $y = 3\sqrt{2}$ in 3y - 2x = 1, we get L.H.S. = $3(3\sqrt{2}) - 2(2\sqrt{2}) = 9\sqrt{2} - 4\sqrt{2} = 5\sqrt{2} \neq \text{R.H.S}$

So, $(2\sqrt{2}, 3\sqrt{2})$ is not a solution of 3y - 2x = 1.

8. Since x = 1, y = 1 is a solution of 8x + 5y = k, therefore it will satisfy the equation.

On putting x = 1 and y = 1 in this equation, we get $8 \times 1 + 5 \times 1 = k \Rightarrow 8 + 5 = k \Rightarrow k = 13$

9. We have, *x* = 2*y*

Taking x = 1, we get $1 = 2y \Rightarrow y = \frac{1}{2}$ Taking y = -4, we get $x = 2(-4) \Rightarrow x = -8$ Thus, the solutions are (1, 1/2) and (-8, -4). **10.** We have 7x - 5y = 35Taking x = 0, we get $-5y = 35 \Rightarrow y = -7$ Taking y = 0, we get $7x = 35 \Rightarrow x = 5$ Taking x = 10, we get $7(10) - 5y = 35 \Rightarrow y = 7$ Thus, the solutions are (5, 0), (0, -7) and (10, 7). **11.** We have, x + 2 = 0 $\Rightarrow x = -2$, for any value of y.

Thus, five solutions can be given as (-2, 0), (-2, 1), (-2, 2), (-2, 3) and (-2, 4).

12. Let the number of goats and hens in the herd are *x* and *y* respectively. Then,

4x + 2y = 40Taking x = 0, we get $2y = 40 \Rightarrow y = 20$ Taking x = 2, we get $2y = 32 \Rightarrow y = 16$ ∴ Two of its solutions are (0, 20) and (2, 16).

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information