Introduction to Euclid's Geometry

CHAPTER 5

TRY YOURSELF

SOLUTIONS

 Age of John = Age of Ram [∵ Euclid axiom 1 : Things which are equal to the same thing are equal to one another] 	6. Given, $AC = DC$ (i)and $CB = CE$ (ii)Adding, (i) and (ii), we get $AC + CB = DC + CE$
2. Given, $y - 24 = 35$ $\Rightarrow y - 24 + 24 = 35 + 24$ [Using Euclid's axiom 2] $\Rightarrow y = 59$ 3. Given, $x + 7 = 13$	[Using Euclid's axiom 2] $\Rightarrow AB = DE$ [Using Euclid's axiom 4] 7. Euclid's 3 rd postulate states that a circle can be drawn with any centre and any radius. Yes, there are terms like
$\Rightarrow x + 7 - 7 = 13 - 7$ [Using Euclid's axiom 3] $\Rightarrow x = 6$ 4. Given, $x = 8$ (i) and $y = 3$ (ii) On adding (i) and (ii), we get x + y = 11 [Using Euclid's axiom 2]	circle, radius and centre that need to be defined first. 8. Suppose there are two intersecting lines l and m which are perpendicular to the same line n as shown in figure.
 5. In a circle having centre at <i>P</i>, we have <i>PR</i> = <i>PQ</i> = radius of circle Also, in a circle having centre at <i>Q</i>, we have <i>QR</i> = <i>PQ</i> = radius of circle. Now, by using Euclid's first axiom; things which are equal to the same things are equal to one another, we get <i>PR</i> = <i>PQ</i> = <i>QR</i>. 	Clearly $\angle 1 + \angle 2 = 180^{\circ}$ But according to Euclid's 5 postulate the lines can not intersect unless $\angle 1 + \angle 2 < 180^{\circ}$. So, our supposition is wrong. Hence, the two intersecting lines cannot be perpendicular to the same line.

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information