Lines and Angles

SOLUTIONS

- **1.** Angle in figure (iii) is an acute angle, as $\angle ABC$ will lie between 0° and 90°.
- 2. Measure of reflex angle lies between 180° and 360°.
- 3. Since, $\angle AOB$ is an obtuse angle, therefore *x* will lie between 90° and 180°.
- **4.** Clearly, $\angle AOB$ + Reflex $\angle AOB$ = 360°
- \therefore 35° + Reflex $\angle AOB = 360^{\circ}$

A TRY YOURSELF

 \Rightarrow Reflex $\angle AOB = 360^{\circ} - 35^{\circ} = 325^{\circ}$

5. If the perpendicular distance between two lines is not same everywhere, then the lines will not be parallel and so they will intersect each other.

Hence, the given statement is true.

6. Let the measure of required angle be *x*.

- Then, by the given condition we have
- $x = (180^{\circ} x) + 100^{\circ}$
- $\Rightarrow 2x = 280^{\circ} \Rightarrow x = 140^{\circ}$
- 7. Let *x* be the measure of required angle. Then, by the given condition we have

 $6(90^{\circ} - x) = 2(180^{\circ} - x) - 20^{\circ}$

- $\Rightarrow 540^\circ 6x = 360^\circ 2x 20^\circ$
- $\Rightarrow \quad 4x = 540^\circ 360^\circ + 20^\circ$
- $\Rightarrow 4x = 200^{\circ} \Rightarrow x = 50^{\circ}$
- 8. Since, *OA* and *OB* are opposite rays, therefore they will form a line.

Now, as *OC* is a ray stand on line *AB*

- $\therefore \quad \angle AOC + \angle BOC = 180^{\circ} \qquad \text{(By linear pair axiom)}$
- $\Rightarrow y + x = 180^{\circ}$
- (i) If $x = 85^\circ$, then $y = 180^\circ x = 180^\circ 85^\circ = 95^\circ$
- (ii) If $y = 115^\circ$, then $x = 180^\circ y = 180^\circ 115^\circ = 65^\circ$
- 9. Since, *OD* is a ray on line *AB*.
- $\therefore \quad \angle AOD + \angle BOD = 180^{\circ} \qquad \text{(By linear pair axiom)}$
- $\Rightarrow \angle AOC + \angle COD + \angle BOD = 180^{\circ}$
 - $[\because \angle AOD = \angle AOC + \angle COD]$

- $\Rightarrow x + (x + 27^{\circ}) + (x + 33^{\circ}) = 180^{\circ}$
- $\Rightarrow 3x + 60^\circ = 180^\circ$
- $\Rightarrow 3x = 120^{\circ} \Rightarrow x = 40^{\circ}$
- **10.** Here, *AOB* is a straight line. (By linear pair axiom) $\angle AOC + \angle BOC = 180^{\circ}$
- $\Rightarrow 84^\circ + 2x = 180^\circ \Rightarrow 2x = 96^\circ \Rightarrow x = 48^\circ$
- Also, $\angle COA = \angle BOD$ (Vertically opposite angles) $\therefore 84^\circ = z$
- Now, as COD is also a straight line.
- $\therefore \ \angle AOC + \angle EOA + \angle EOD = 180^{\circ}$
- $\Rightarrow 84^\circ + 75^\circ + y = 180^\circ$
- \Rightarrow $y = 180^{\circ} 159^{\circ} \Rightarrow y = 21^{\circ}$
- Hence, $x = 48^{\circ}$, $y = 21^{\circ}$ and $z = 84^{\circ}$.

11. Since, $l \parallel m$ and $m \parallel n$, therefore $l \parallel n$

Clearly, using the concept of vertically opposite angles and the concept of co-interior angles, we get

- $\omega + \theta = 180^{\circ}$ \Rightarrow $(3p + 5)^{\circ} + (2p)^{\circ} = 180^{\circ}$ \Rightarrow (3p+5)+2p=180 \Rightarrow 5p = 175 $\Rightarrow p = 35$ ÷. $\omega = (3p + 5)^{\circ} = (3 \times 35 + 5)^{\circ} = 110^{\circ}$ and $\theta = (2p)^{\circ} = (2 \times 35)^{\circ} = 70^{\circ}$ Also, $y = \theta = 70^{\circ}$ (Corresponding angles as $l \parallel n$) (Alternate interior angles as $l \parallel m$) $z = y = 70^{\circ}$ and $x = y = 70^{\circ}$ (Vertically opposite angles) **12.** Since, $AB \parallel CD$ and $CD \parallel EF$, therefore $AB \parallel EF$. So, $\angle BAE + \angle AEF = 180^{\circ}$ (Co-interior angles) \Rightarrow 90° + $\angle AEF$ = 180° (:: $EA \perp AB$)
- $\Rightarrow 27^{\circ} + z = 90^{\circ} \Rightarrow z = 63^{\circ}$
- Also, $y + z = 180^{\circ}$ (Co-interior angles as $CD \parallel EF$) $\Rightarrow y = 180^{\circ} - z = 180^{\circ} - 63^{\circ} = 117^{\circ}$

and
$$x = y = 117^{\circ}$$
 (Corresponding angles as $AB \parallel CD$)

CHAPTER 6

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information