EXERCISE - 7.1

1. In quadrilateral $A C B D$, we have $A C=A D$ and $A B$ being the bisector of $\angle A$.
Now, in $\triangle A B C$ and $\triangle A B D$,
$A C=A D$
[Given]
$\angle C A B=\angle D A B$
$A B=A B$
$\therefore \quad \triangle A B C \cong \triangle A B D$
So, $B C=B D$
2. In quadrilateral $A B C D$, we have
$A D=B C$ and $\angle D A B=\angle C B A$
In $\triangle A B D$ and $\triangle B A C$,
$A D=B C$
$\angle D A B=\angle C B A$
$A B=A B$
$\therefore \quad \triangle A B D \cong \triangle B A C$
$\therefore \quad B D=A C$
and $\angle A B D=\angle B A C$
3. In $\triangle O B C$ and $\triangle O A D$, we have
$\angle O B C=\angle O A D$
$B C=A D$
$\angle B O C=\angle A O D$
$\therefore \quad \triangle O B C \cong \triangle O A D$
$\Rightarrow \quad O B=O A$
i.e., O is the mid-point of $A B$.

Thus, $C D$ bisects $A B$.
4. $\because p \| q$ and $A C$ is a transversal.
$\therefore \quad \angle B A C=\angle D C A$
[Alternate interior angles]
Also $l \| m$ and $A C$ is a transversal.
$\therefore \quad \angle B C A=\angle D A C$
[Alternate interior angles]
Now, in $\triangle A B C$ and $\triangle C D A$, we have
$\angle B A C=\angle D C A$
[From (i)]
$A C=A C$
$\angle B C A=\angle D A C$
[Common]
[From (ii)]
$\therefore \quad \triangle A B C \cong \triangle C D A$
[By ASA congruence]
5. We have, l is the bisector of $\angle Q A P$.
$\therefore \quad \angle Q A B=\angle P A B$ and
$\angle Q=\angle P$
[Each equals 90°]
$\Rightarrow \quad \angle A B Q=\angle A B P$
(i) Now, in $\triangle A P B$ and $\triangle A Q B$, we have $\angle A B P=\angle A B Q$
[From (i)]
$A B=A B$
$\angle P A B=\angle Q A B$
$\therefore \quad \triangle A P B \cong \triangle A Q B$
[Common]
[Given]
(ii) Since $\triangle A P B \cong \triangle A Q B$
$\Rightarrow \quad B P=B Q$
[By C.P.C.T.]
or Perpendicular distance of B from $A P$
$=$ Perpendicular distance of B from $A Q$
Thus, the point B is equidistant from the arms of $\angle A$.
6. We have, $\angle B A D=\angle E A C$

Adding $\angle D A C$ on both sides, we have
$\angle B A D+\angle D A C=\angle E A C+\angle D A C$
$\Rightarrow \quad \angle B A C=\angle D A E$
Now, in $\triangle A B C$ and $\triangle A D E$, we have
$\angle B A C=\angle D A E$
[Proved above]
$A B=A D$
[Given]
[Given]
$A C=A E$
[Gruence]
$\therefore \quad \triangle A B C \cong \triangle A D E$
[By SAS congruence]
$\Rightarrow \quad B C=D E$
[By C.P.C.T.]
7. We have, P is the mid-point of $A B$.
$\therefore \quad A P=B P$
$\angle E P A=\angle D P B$
[Given]
Adding $\angle E P D$ on both sides, we get
$\angle E P A+\angle E P D=\angle D P B+\angle E P D$
$\Rightarrow \quad \angle A P D=\angle B P E$
(i) Now, in $\triangle D A P$ and $\triangle E B P$, we have
$\angle P A D=\angle P B E \quad[\because \angle B A D=\angle A B E]$
$A P=B P \quad$ [Proved above]
$\angle D P A=\angle E P B$
$\therefore \quad \triangle D A P \cong \triangle E B P$
[By ASA congruence]
(ii) Since, $\triangle D A P \cong \triangle E B P$
$\Rightarrow \quad A D=B E$
[By C.P.C.T.]
8. Since M is the mid-point of $A B$.
[Given]
$\therefore \quad B M=A M$
(i) In $\triangle A M C$ and $\triangle B M D$, we have
$C M=D M$
[Given]
$\angle A M C=\angle B M D$
$A M=B M$
$\therefore \quad \triangle A M C \cong \triangle B M D$
[Vertically opposite angles]
[Proved above]
(ii) Since $\triangle A M C \cong \triangle B M D$
$\Rightarrow \quad \angle M A C=\angle M B D$
[By C.P.C.T.]
But they form a pair of alternate interior angles.
$\therefore \quad A C \| D B$

Now, $B C$ is a transversal which intersects parallel lines $A C$ and $D B$.
$\therefore \quad \angle B C A+\angle D B C=180^{\circ} \quad$ [Co-interior angles]
But $\angle B C A=90^{\circ} \quad[\because \triangle A B C$ is right angled at $C]$
$\therefore \quad 90^{\circ}+\angle D B C=180^{\circ}$
$\Rightarrow \angle D B C=90^{\circ}$
(iii) Since, $\triangle A M C \cong \triangle B M D$
$\therefore \quad A C=B D$
Now, in $\triangle D B C$ and $\triangle A C B$, we have
$B D=C A$
$\angle D B C=\angle A C B$
$B C=C B$
$\therefore \quad \triangle D B C \cong \triangle A C B$
(iv) As $\triangle D B C \cong \triangle A C B$
$\Rightarrow D C=A B$
But $D M=C M$
[By C.P.C.T.]
[Proved above]
[Each equals 90°]
[Common]
[By SAS congruence]
$\therefore \quad C M=\frac{1}{2} D C=\frac{1}{2} A B$

EXERCISE - 7.2

1. (i) Let $B D$ and $C E$ are the bisectors of $\angle B$ and $\angle C$ respectively.
In $\triangle A B C$, we have $A C=A B$
$\therefore \quad \angle A B C=\angle A C B$
[Angles opposite to equal sides of a triangle are equal]
$\Rightarrow \frac{1}{2} \angle A B C=\frac{1}{2} \angle A C B$
$\Rightarrow \quad \angle O B C=\angle O C B$
$\Rightarrow \quad O C=O B$

[Sides opposite to equal angles of a triangle are equal]
(ii) In $\triangle A B O$ and $\triangle A C O$, we have
$A B=A C$
[Given]
$\angle O B A=\angle O C A$
$O B=O C$
$\left[\because \frac{1}{2} \angle B=\frac{1}{2} \angle C\right]$
[Proved above]
$\therefore \quad \triangle A B O \cong \triangle A C O$
$\Rightarrow \quad \angle O A B=\angle O A C$
[By SAS congruence]
[By C.P.C.T.]
$\Rightarrow \quad A O$ bisects $\angle A$.
2. Since $A D$ is bisector of $B C$.
$\therefore \quad B D=C D$
Now, in $\triangle A B D$ and $\triangle A C D$, we have
$A D=A D$
$\angle A D B=\angle A D C$
$B D=C D$
$\therefore \quad \triangle A B D \cong \triangle A C D$
$\Rightarrow \quad A B=A C$
[Common]

Thus, $A B C$ is an isosceles triangle.
3. Given, $\triangle A B C$ is an isosceles triangle with $A B=A C$ $\Rightarrow \quad \angle A C B=\angle A B C$
[Angles opposite to equal sides of a triangle are equal] $\Rightarrow \quad \angle B C E=\angle C B F$
Now, in $\triangle B E C$ and $\triangle C F B$, we have
$\angle B C E=\angle C B F$
$\angle B E C=\angle C F B$
[Proved above]
[Each equals 90°]
$B C=C B$
$\therefore \quad \triangle B E C \cong \triangle C F B$
[Common]
[By AAS congruence]
So, $B E=C F$
[By C.P.C.T.]
4. (i) In $\triangle A B E$ and $\triangle A C F$, we have
$\angle A E B=\angle A F C \quad\left[\right.$ Each 90° as $B E \perp A C$ and $\left.C F \perp A B\right]$
$\angle A=\angle A$
[Common]
$B E=C F$
[Given]
$\therefore \quad \triangle A B E \cong \triangle A C F$
(ii) Since, $\triangle A B E \cong \triangle A C F$
$\therefore \quad A B=A C$
[By C.P.C.T.]
5. In $\triangle A B C$, we have
$A B=A C$
$[\because A B C$ is an isosceles triangle]
$\therefore \quad \angle A B C=\angle A C B$
[Angles opposite to equal sides of a triangle are equal]
Again, in $\triangle B D C$, we have
$B D=C D \quad[\because B D C$ is an isosceles triangle $]$
$\therefore \quad \angle C B D=\angle B C D$
[Angles opposite to equal sides of a triangle are equal] Adding (i) and (ii), we have
$\angle A B C+\angle C B D=\angle A C B+\angle B C D$
$\Rightarrow \quad \angle A B D=\angle A C D$
6. Given, $A B=A C$ and $A B=A D$
$\therefore \quad A C=A D$
Now, in $\triangle A B C$, we have
$\angle B+\angle A C B+\angle B A C=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \quad 2 \angle A C B+\angle B A C=180^{\circ}$
$[\because \angle B=\angle A C B$ (Angles opposite to equal sides of a triangle are equal)]
Similarly, in $\triangle A C D$,
$\angle D+\angle A C D+\angle C A D=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \quad 2 \angle A C D+\angle C A D=180^{\circ}$
$[\because \angle D=\angle A C D$ (Angles opposite to equal sides of a triangle are equal)]
Adding (i) and (ii), we have
$2 \angle A C B+\angle B A C+2 \angle A C D+\angle C A D=180^{\circ}+180^{\circ}$
$\Rightarrow \quad 2[\angle A C B+\angle A C D]+[\angle B A C+\angle C A D]=360^{\circ}$
$\Rightarrow \quad 2 \angle B C D+180^{\circ}=360^{\circ}$
$[\because \angle B A C$ and $\angle C A D$ form a linear pair]
$\Rightarrow 2 \angle B C D=360^{\circ}-180^{\circ}=180^{\circ}$
$\Rightarrow \angle B C D=\frac{180^{\circ}}{2}=90^{\circ}$
7. In $\triangle A B C$, we have
$A B=A C$
[Given]
$\therefore \quad \angle A C B=\angle A B C$
[Angles opposite to equal sides of a triangle are equal]

Now, $\angle A+\angle B+\angle C=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \quad 90^{\circ}+\angle B+\angle C=180^{\circ}$
[$\angle A=90^{\circ}$ (Given)]
$\Rightarrow \quad \angle B+\angle C=180^{\circ}-90^{\circ}=90^{\circ}$
But $\angle A B C=\angle A C B$, i.e., $\angle B=\angle C$
$\therefore \angle B=\angle C=\frac{90^{\circ}}{2}=45^{\circ}$
Thus, $\angle B=45^{\circ}$ and $\angle C=45^{\circ}$
8. In $\triangle A B C$, we have
$A B=B C=C A \quad[\because A B C$ is an equilateral triangle $]$
Now, $A B=B C \Rightarrow \angle A=\angle C$
[Angles opposite to equal sides of a triangle are equal]
Similarly, $A C=B C \Rightarrow \angle A=\angle B$
From (i) and (ii), we have $\angle A=\angle B=\angle C$
Let $\angle A=\angle B=\angle C=x$
Since, $\angle A+\angle B+\angle C=180^{\circ}$
[Angle sum property of a triangle]
$\therefore \quad x+x+x=180^{\circ} \Rightarrow 3 x=180^{\circ}$
$\Rightarrow \quad x=60^{\circ}$

$\therefore \quad \angle A=\angle B=\angle C=60^{\circ}$
Thus, the angles of an equilateral triangle are 60° each.

EXERCISE - 7.3

1. (i) In $\triangle A B D$ and $\triangle A C D$, we have
$A B=A C$
$A D=A D$
$B D=C D$
[Given]
$\therefore \quad \triangle A B D \cong \triangle A C D$
[By SSS congruence]
$\Rightarrow \quad \angle B A D=\angle C A D$
[By C.P.C.T.]
$\Rightarrow \quad \angle B A P=\angle C A P$
(ii) In $\triangle A B P$ and $\triangle A C P$, we have
$A B=A C$
$\angle B A P=\angle C A P$
$A P=A P$
$\therefore \quad \triangle A B P \cong \triangle A C P$
(iii) Since, $\angle B A P=\angle C A P$
$\therefore \quad A P$ is the bisector of $\angle A$.
Again, in $\triangle B D P$ and $\triangle C D P$, we have
$B D=C D$
[Given]
$D P=D P$
[Common]
$B P=C P$
$\therefore \quad \triangle B D P \cong \triangle C D P$
$\Rightarrow \quad \angle B D P=\angle C D P$
$[\because \triangle A B P \cong \triangle A C P]$
[By SSS congruence]
[By C.P.C.T.]
$\Rightarrow \quad D P($ or $A P)$ is the bisector of $\angle B D C$
$\therefore \quad A P$ is the bisector of $\angle A$ as well as $\angle D$.
(iv) As, $\triangle A B P \cong \triangle A C P$
$\Rightarrow \quad \angle A P B=\angle A P C$ and $B P=C P$
But $\angle A P B+\angle A P C=180^{\circ}$
[By C.P.C.T.]
$\therefore \quad \angle A P B=\angle A P C=90^{\circ}$
$\Rightarrow \quad A P \perp B C$.
Hence, $A P$ is the perpendicular bisector of $B C$.
2. (i) In right $\triangle A B D$ and $\triangle A C D$,
$A B=A C$
$\angle A D B=\angle A D C$
$A D=A D$
[Given]
$\therefore \quad \triangle A B D \cong \triangle A C D$ [By RHS congruence]
[Each equals 90°]

So, $B D=C D$
[By C.P.C.T.]
$\Rightarrow \quad D$ is the mid-point of $B C$ or $A D$ bisects $B C$.
(ii) Since, $\triangle A B D \cong \triangle A C D$,
$\Rightarrow \quad \angle B A D=\angle C A D$
[By C.P.C.T.]
3. In $\triangle A B C, A M$ is the median
[Given]
$\therefore \quad B M=\frac{1}{2} B C$
In $\triangle P Q R, P N$ is the median
[Given]
$\therefore \quad Q N=\frac{1}{2} Q R$
Also, $B C=Q R \Rightarrow \frac{1}{2} B C=\frac{1}{2} Q R$
$\Rightarrow \quad B M=Q N \quad[$ From (1) and (2)]
(i) In $\triangle A B M$ and $\triangle P Q N$, we have
$A B=P Q$
[Given]
$A M=P N$
$B M=Q N$
[Given]
$\therefore \quad \triangle A B M \cong \triangle P Q N$
[From (3)]
(ii) Since $\triangle A B M \cong \triangle P Q N$
$\Rightarrow \quad \angle B=\angle Q$
[By C.P.C.T.]
Now, in $\triangle A B C$ and $\triangle P Q R$, we have
$\angle B=\angle Q$
[From (4)]
$A B=P Q$
[Given]
$B C=Q R$
$\therefore \quad \triangle A B C \cong \triangle P Q R$
[By SAS congruence]
4. Since, $B E \perp A C$ [Given]
$\therefore \quad \triangle B E C$ is a right triangle such that $\angle B E C=90^{\circ}$
Similarly, $\angle C F B=90^{\circ}$
Now, in right $\triangle B E C$ and right $\triangle C F B$, we have
$B E=C F$
$B C=C B$

[Given] [Common]
$\angle B E C=\angle C F B=90^{\circ}$
$\therefore \quad \triangle B E C \cong \triangle C F B$
[By RHS congruence]
So, $\angle B C E=\angle C B F$
[By C.P.C.T.]
or $\angle B C A=\angle C B A$
Now, in $\triangle A B C, \angle B C A=\angle C B A \Rightarrow A B=A C$
[Sides opposite to equal angles of a triangle are equal] $\therefore \quad A B C$ is an isosceles triangle.
5. We have, $A P \perp B C$
$\therefore \quad \angle A P B=90^{\circ}$ and $\angle A P C=90^{\circ}$
In $\triangle A B P$ and $\triangle A C P$, we have
$\angle A P B=\angle A P C$
[Each equals 90°]
$A B=A C$
$A P=A P$
[Given]
$\therefore \quad \triangle A B P \cong \triangle A C P \quad$ [By RHS congruence]
So, $\angle B=\angle C \quad$ [By C.P.C.T.]
EXERCISE - 7.5

1. Let us consider a $\triangle A B C$.

Draw l, the perpendicular bisector of $A B$.
Draw m, the perpendicular bisector of $B C$.
Let the two perpendicular bisectors l and m meet at O.

So, $A D$ bisects $\angle A$.
O is the required point which is equidistant from all the vertices A, B and C.
Note: If we draw a circle with centre O and radius $O A$, $O B$ or $O C$, then it will pass through A, B and C. The point O is called circumcentre of the triangle.
2. Let us consider a $\triangle A B C$.

Draw l, the bisector of $\angle B$.
Draw m, the bisector of $\angle C$.
Let the two bisectors l and m meet at O. Thus, O is the required point which is equidistant from the sides of $\triangle A B C$.
Note: If we draw $O M \perp B C$ and draw a circle with O as centre and $O M$ as radius, then the circle will touch the sides of the triangle.

Point O is called the incentre of the triangle.
3. Let us join A and B, and draw l, the perpendicular bisector of $A B$.
Now, join B and C, and draw m, the perpendicular bisector of $B C$. Let the perpendicular bisectors l and m meet at O. The point O is the
 required point where the ice cream parlour be set up.
Note: If we join A and C and draw the perpendicular bisectors, then it will also meet (or pass through) the point O.
4. It is an activity. We require 150 equilateral triangles of side 1 cm in the figure (i) and 300 equilateral triangles in the figure (ii).
$\therefore \quad$ The figure (ii) has more triangles.

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

