Triangles

CHAPTER

NCERT FOCUS

SOLUTIONS

MtG 100 PERCENT Mathematics Class-9

Now, BC is a transversal which intersects parallel lines AC and DB.

 $\angle BCA + \angle DBC = 180^{\circ}$ · . [Co-interior angles] But $\angle BCA = 90^{\circ}$ [:: $\triangle ABC$ is right angled at C] $90^{\circ} + \angle DBC = 180^{\circ}$ • $\angle DBC = 90^{\circ}$ \Rightarrow (iii) Since, $\triangle AMC \cong \triangle BMD$ AC = BD[By C.P.C.T.] ÷. Now, in $\triangle DBC$ and $\triangle ACB$, we have BD = CA[Proved above] $\angle DBC = \angle ACB$ [Each equals 90°] BC = CB[Common] [By SAS congruence] $\therefore \Delta DBC \cong \Delta ACB$ (iv) As $\triangle DBC \cong \triangle ACB$ $\Rightarrow DC = AB$ [By C.P.C.T.] But DM = CM[Given] $\therefore CM = \frac{1}{2}DC = \frac{1}{2}AB$

EXERCISE - 7.2

(i) Let *BD* and *CE* are the bisectors of $\angle B$ and $\angle C$ respectively. In $\triangle ABC$, we have AC = AB

 $\angle ABC = \angle ACB$

[Angles opposite to equal sides of a triangle are equal]

 $\Rightarrow \frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$ $\Rightarrow \angle OBC = \angle OCB$ $\Rightarrow OC = OB$

[Sides opposite to equal angles of a triangle are equal]

(ii) In $\triangle ABO$ and $\triangle ACO$, we have

AB = AC

 $\angle OBA = \angle OCA$

 $\left[\because \frac{1}{2} \angle B = \frac{1}{2} \angle C \right]$ OB = OC[Proved above] $\Delta ABO \cong \Delta ACO$ [By SAS congruence] *.*... $\angle OAB = \angle OAC$ \Rightarrow AO bisects $\angle A$. \Rightarrow Since AD is bisector of BC. 2. BD = CDNow, in $\triangle ABD$ and $\triangle ACD$, we have AD = AD $\angle ADB = \angle ADC$ [Each equals 90°] BD = CD[Proved above] [By SAS congruence] $\Delta ABD \cong \Delta ACD$ AB = AC \rightarrow Thus, *ABC* is an isosceles triangle.

Given, $\triangle ABC$ is an isosceles triangle with AB = AC3. $\angle ACB = \angle ABC$ \Rightarrow [Angles opposite to equal sides of a triangle are equal] $\Rightarrow \angle BCE = \angle CBF$ Now, in $\triangle BEC$ and $\triangle CFB$, we have

[Proved above] $\angle BCE = \angle CBF$ $\angle BEC = \angle CFB$ [Each equals 90°] BC = CB[Common] $\Delta BEC \cong \Delta CFB$ [By AAS congruence] ·.. So, BE = CF[By C.P.C.T.] 4. (i) In $\triangle ABE$ and $\triangle ACF$, we have $\angle AEB = \angle AFC$ [Each 90° as $BE \perp AC$ and $CF \perp AB$] $\angle A = \angle A$ [Common] BE = CF[Given] ·.. $\Delta ABE \cong \Delta ACF$ [By AAS congruence] (ii) Since, $\triangle ABE \cong \triangle ACF$ AB = AC[By C.P.C.T.] 5. In $\triangle ABC$, we have AB = AC[:: *ABC* is an isosceles triangle] $\therefore \angle ABC = \angle ACB$...(i) [Angles opposite to equal sides of a triangle are equal] Again, in $\triangle BDC$, we have BD = CD[:: *BDC* is an isosceles triangle] $\therefore \angle CBD = \angle BCD$...(ii) [Angles opposite to equal sides of a triangle are equal] Adding (i) and (ii), we have $\angle ABC + \angle CBD = \angle ACB + \angle BCD$ $\angle ABD = \angle ACD$ Given, AB = AC and AB = AD6. ÷. AC = ADNow, in $\triangle ABC$, we have $\angle B + \angle ACB + \angle BAC = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow 2\angle ACB + \angle BAC = 180^{\circ}$...(i) [:: $\angle B = \angle ACB$ (Angles opposite to equal sides of a triangle are equal)] Similarly, in $\triangle ACD$, $\angle D$ + $\angle ACD$ + $\angle CAD$ = 180° [Angle sum property of a triangle] $\Rightarrow 2\angle ACD + \angle CAD = 180^{\circ}$...(ii) [:: $\angle D = \angle ACD$ (Angles opposite to equal sides of a triangle are equal)] Adding (i) and (ii), we have $2\angle ACB + \angle BAC + 2\angle ACD + \angle CAD = 180^{\circ} + 180^{\circ}$ $\Rightarrow 2[\angle ACB + \angle ACD] + [\angle BAC + \angle CAD] = 360^{\circ}$ $2\angle BCD + 180^{\circ} = 360^{\circ}$ \rightarrow [:: $\angle BAC$ and $\angle CAD$ form a linear pair] $2\angle BCD = 360^{\circ} - 180^{\circ} = 180^{\circ}$ $\Rightarrow \angle BCD = \frac{180^\circ}{2} = 90^\circ$ 7. In $\triangle ABC$, we have AB = AC[Given] $\therefore \ \angle ACB = \angle ABC$ [Angles opposite to equal sides of a triangle are equal] Now, $\angle A + \angle B + \angle C = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow 90^{\circ} + \angle B + \angle C = 180^{\circ}$ $[\angle A = 90^{\circ}(\text{Given})]$ $\Rightarrow \angle B + \angle C = 180^\circ - 90^\circ = 90^\circ$ But $\angle ABC = \angle ACB$, *i.e.*, $\angle B = \angle C$ $\therefore \ \angle B = \angle C = \frac{90^\circ}{2} = 45^\circ$ Thus, $\angle B = 45^\circ$ and $\angle C = 45^\circ$

[Given]

[By C.P.C.T.]

[Common]

[By C.P.C.T.]

Triangles

8. In $\triangle ABC$, we have	
AB = BC = CA	[:: <i>ABC</i> is an equilateral triangle]
Now, $AB = BC \Longrightarrow \angle A = A$	∠ <i>C</i> (i)
[Angles opposite to eq	ual sides of a triangle are equal]
Similarly, $AC = BC \implies$	$\angle A = \angle B$ (ii)
From (i) and (ii), we hav	$e \angle A = \angle B = \angle C$
Let $\angle A = \angle B = \angle C = x$	A
Since, $\angle A + \angle B + \angle C = 2$	180°
[Angle sum proper	ty of a triangle]
\therefore $x + x + x = 180^{\circ} \Rightarrow$	$3x = 180^{\circ}$
$\Rightarrow x = 60^{\circ}$	$B^{2} + C$
$\therefore \angle A = \angle B = \angle C = 60$)°
Thus, the angles of an equilateral triangle are 60° each.	

3.

In $\triangle ABC$, AM is the median

EXERCISE - 7.3

(i) In $\triangle ABD$ and $\triangle ACD$, we have 1. AB = AC[Given] AD = AD[Common] BD = CD[Given] $\Delta ABD \cong \Delta ACD$ [By SSS congruence] *.*.. $\angle BAD = \angle CAD$ [By C.P.C.T.] \Rightarrow $\angle BAP = \angle CAP$ \Rightarrow ...(1) (ii) In $\triangle ABP$ and $\triangle ACP$, we have AB = AC[Given] $\angle BAP = \angle CAP$ [From (1)] AP = AP[Common] $\Delta ABP \cong \Delta ACP$ [By SAS congruence] [From (1)] (iii) Since, $\angle BAP = \angle CAP$ *AP* is the bisector of $\angle A$. *.*.. Again, in $\triangle BDP$ and $\triangle CDP$, we have BD = CD[Given] DP = DP[Common] BP = CP $[:: \Delta ABP \cong \Delta ACP]$ $\Delta BDP \cong \Delta CDP$ *.*.. [By SSS congruence] $\angle BDP = \angle CDP$ \Rightarrow [By C.P.C.T.] *DP* (or *AP*) is the bisector of $\angle BDC$ \Rightarrow *.*.. *AP* is the bisector of $\angle A$ as well as $\angle D$. (iv) As, $\triangle ABP \cong \triangle ACP$ $\angle APB = \angle APC$ and BP = CP[By C.P.C.T.] \Rightarrow But $\angle APB + \angle APC = 180^{\circ}$ [Linear pair] $\angle APB = \angle APC = 90^{\circ}$ *.*.. $AP \perp BC$. \Rightarrow Hence, AP is the perpendicular bisector of BC. (i) In right $\triangle ABD$ and $\triangle ACD$, 2. AB = AC[Given] $\angle ADB = \angle ADC$ [Each equals 90°] AD = AD[Common] *.*•. $\triangle ABD \cong \triangle ACD$ [By RHS congruence] В D So, BD = CD[By C.P.C.T.] *D* is the mid-point of *BC* or *AD* bisects *BC*. \Rightarrow (ii) Since, $\triangle ABD \cong \triangle ACD$, $\angle BAD = \angle CAD$ [By C.P.C.T.] \Rightarrow So, *AD* bisects $\angle A$.

$$\therefore BM = \frac{1}{2}BC \qquad ...(1)$$
In $\triangle PQR, PN$ is the median [Given]

$$\therefore QN = \frac{1}{2}QR \qquad ...(2)$$
Also, $BC = QR \Rightarrow \frac{1}{2}BC = \frac{1}{2}QR$

$$\Rightarrow BM = QN \qquad [From (1) and (2)] \qquad ...(3)$$
(i) In $\triangle ABM$ and $\triangle PQN$, we have
 $AB = PQ$ [Given]
 $AM = PN$ [Given]
 $BM = QN$ [From (3)]

$$\therefore \triangle ABM \cong \triangle PQN \qquad [By SSS congruence]$$
(ii) Since $\triangle ABM \cong \triangle PQN$ [By SSS congruence]
(iii) Since $\triangle ABM \cong \triangle PQN$ [By SSS congruence]
 $BC = QR$ [From (4)]
 $BC = QR$ [Given]

$$\therefore \triangle ABC \cong \triangle PQR \qquad [By SAS congruence]$$
4. Since, $BE \perp AC$ [Given]

$$\therefore \triangle ABC \cong APQR \qquad [By SAS congruence]$$
4. Since, $BE \perp AC$ [Given]

$$\therefore \triangle ABC \cong ar light triangle such that $\angle BEC = 90^{\circ}$
Similarly, $\angle CFB = 90^{\circ}$
Now, in right $\triangle BEC$ and right $\triangle CFB$, B
 $BE = CF$ [Given]
 $\angle BEC = \angle CFB = 90^{\circ}$
Now, in $\triangle ABC \cong \angle CBA$ [By RHS congruence]
So, $\angle BCE = \angle CBF$ [By RHS congruence]
So, $\angle BCE = \angle CBA$
Now, in $\triangle ABC, \angle BCA = \angle CBA \Rightarrow AB = AC$
[Sides opposite to equal angles of a triangle are equal]
 $\therefore ABEC$ is an isosceles triangle.
5. We have, $AP \perp BC$
 $\therefore \angle ABB = 90^{\circ}$ and $\angle APC = 90^{\circ}$
In $\triangle ABP \equiv \triangle ACP$ [By RHS congruence]
 $\therefore \triangle ABP \equiv \triangle ACP$ [By RHS congruence]
So, $\angle B = \angle C$ [By C.P.C.T.]
EXERCISE - 7.5
1. Let us consider a $\triangle ABC$.
Draw *m*, the perpendicular bisector of *AB*.
Draw *m*, th$$

bisector of BC.

♦ *m*

Let the two perpendicular bisectors *l* and *m* meet at *O*.

[Given]

MtG 100 PERCENT Mathematics Class-9

O is the required point which is equidistant from all the vertices *A*, *B* and *C*.

Note: If we draw a circle with centre *O* and radius *OA*, *OB* or *OC*, then it will pass through *A*, *B* and *C*. The point *O* is called circumcentre of the triangle.

2. Let us consider a $\triangle ABC$. Draw *l*, the bisector of $\angle B$. Draw *m*, the bisector of $\angle C$. Let the two bisectors *l* and *m* meet at *O*. Thus, *O* is the required point which is equidistant from the sides of $\triangle ABC$. **Note:** If we draw $OM \perp BC$ and draw a circle with *O* as centre and *OM* as radius, then the circle will touch the sides of the triangle.

Point *O* is called the incentre of the triangle.

3. Let us join *A* and *B*, and draw *l*, the perpendicular bisector of *AB*.

Now, join *B* and *C*, and draw *m*, the perpendicular bisector of *BC*. Let the perpendicular bisectors *l* and *m* meet at *O*. The point *O* is the required point where the ice cream parlour be set up.

Note: If we join *A* and *C* and draw the perpendicular bisectors, then it will also meet (or pass through) the point *O*.

4. It is an activity. We require 150 equilateral triangles of side 1 cm in the figure (i) and 300 equilateral triangles in the figure (ii).

 \therefore The figure (ii) has more triangles.

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information