EXERCISE-8.1

1. Let the angles of a quadrilateral be $3 x, 5 x, 9 x$ and $13 x$.
$\therefore \quad 3 x+5 x+9 x+13 x=360^{\circ}$
[Angle sum property of a quadrilateral]
$\Rightarrow 30 x=360^{\circ} \Rightarrow x=12^{\circ}$
$\therefore \quad 3 x=3 \times 12^{\circ}=36^{\circ}$
$5 x=5 \times 12^{\circ}=60^{\circ}$
$9 x=9 \times 12^{\circ}=108^{\circ}$
$13 x=13 \times 12^{\circ}=156^{\circ}$
\therefore Required angles of the quadrilateral are $36^{\circ}, 60^{\circ}$, 108° and 156°.
2. Let $A B C D$ be a parallelogram such that $A C=B D$.

$$
\begin{aligned}
& \text { In } \triangle A B C \text { and } \triangle D C B \text {, we have } \\
& A C=D B \\
& A B=D C \\
& \text { [Given] } \\
& \text { [Opposite sides of a parallelogram] } \\
& B C=C B \\
& \begin{array}{llr}
& B C=C B & \text { [Common] } \\
\therefore & \triangle A B C \cong \triangle D C B & \text { [By SSS congruence] } \\
\Rightarrow & \angle A B C=\angle D C B & \text { [By C.P.C.T.] ...(i) }
\end{array}
\end{aligned}
$$

Now, $A B \| D C$ and $B C$ is a transversal.

$$
\begin{equation*}
[\because A B C D \text { is a parallelogram }] \tag{ii}
\end{equation*}
$$

$\therefore \quad \angle A B C+\angle D C B=180^{\circ}$
[Angles on the same side of a transversal]
From (i) and (ii), we have $\angle A B C=\angle D C B=90^{\circ}$
$\Rightarrow A B C D$ is a parallelogram having an angle equal to 90°.
$\therefore \quad A B C D$ is a rectangle.
3. Let $A B C D$ be a quadrilateral such that the diagonals $A C$ and $B D$ bisect each other at right angles.
In $\triangle A O B$ and $\triangle A O D$, we have
$A O=O A$
[Common]
$O B=O D \quad[O$ is the mid-point of $B D]$ $\angle A O B=\angle A O D \quad\left[\right.$ Each equals $\left.90^{\circ}\right]$

$\therefore \quad \triangle A O B \cong \triangle A O D$ [By SAS congruence]
$\therefore \quad A B=A D$
[By C.P.C.T.] ...(i)
Similarly, $A B=B C$

$$
\begin{equation*}
B C=C D \tag{ii}
\end{equation*}
$$

And $C D=D A$
$\therefore \quad$ From (i), (ii), (iii) and (iv), we have $A B=B C=C D=D A$
Thus, the given quadrilateral is a rhombus.
Alternative solution : $A B C D$ can be first proved a parallelogram. Then proving one pair of adjacent sides equal will result in rhombus.
4. Let $A B C D$ be a square such that its diagonals $A C$ and $B D$ intersect at O.

(i) To prove that the diagonals are equal, i.e., $A C=B D$.
In $\triangle A B C$ and $\triangle B A D$, we have

$$
A B=B A
$$

$B C=A D$
$\angle A B C=\angle B A D$
$\therefore \quad \triangle A B C \cong \triangle B A D$
[Common] [Sides of a square]
[Each equals 90°] [By SAS congruence] [By C.P.C.T.] ...(1)
$\Rightarrow A C=B D$
(ii) To prove diagonals bisect each other.
$\because \quad A D \| B C$ and $A C$ is a transversal.
[A square is a parallelogram]
$\therefore \quad \angle 1=\angle 3$
[Alternate interior angles]
Similarly, $\angle 2=\angle 4$
Now, in $\triangle O A D$ and $\triangle O C B$, we have

$$
\begin{array}{lr}
A D=C B & \text { [Sides of a square] } \\
\angle 1=\angle 3 & \text { [Proved] } \\
\angle 2=\angle 4 & \text { [Proved] }
\end{array}
$$

$\therefore \quad \triangle O A D \cong \triangle O C B$
[By ASA congruence]
$\Rightarrow \quad O A=O C$ and $O D=O B$
[By C.P.C.T.]
\Rightarrow Diagonals $A C$ and $B D$ bisect each other at O.
(iii) To prove diagonals intersect at right angles.

In $\triangle O B A$ and $\triangle O D A$, we have

$$
\begin{aligned}
& O B=O D \\
& B A=D A \\
& O A=A O
\end{aligned}
$$

[Proved]
$\therefore \quad \triangle O B A \cong \triangle O D A \quad$ [By SSS congruence]
$\Rightarrow \quad \angle A O B=\angle A O D$
[By C.P.C.T.]
$\because \quad \angle A O B$ and $\angle A O D$ form a linear pair.
$\therefore \quad \angle A O B+\angle A O D=180^{\circ}$
$\therefore \quad \angle A O B=\angle A O D=90^{\circ}$
[By (3)]
$\Rightarrow \quad A C \perp B D$
From (1), (2) and (4), we get $A C$ and $B D$ are equal and bisect each other at right angles.
5. Let $A B C D$ be a quadrilateral such that diagonals $A C$ and $B D$ are equal and bisect each other at right angles.

Now, in $\triangle A O D$ and $\triangle A O B$, we have

$$
\begin{aligned}
& \angle A O D=\angle A O B \\
& A O=O A \\
& O D=O B \\
\therefore \quad & \triangle A O D \cong \triangle A O B \\
\Rightarrow & A D=A B
\end{aligned}
$$

Similarly, we have $A B=B C$

$$
\begin{align*}
& B C=C D \tag{ii}\\
& C D=D A \tag{iii}
\end{align*}
$$

[Each equals 90°]
[Common]
$[\because A C$ bisects $B D]$
[By SAS congruence]
[By C.P.C.T.] ...(i)

From (i), (ii), (iii) and (iv), we have
$A B=B C=C D=D A$
$\therefore \quad$ Quadrilateral $A B C D$ has all sides equal.
In $\triangle A O D$ and $\triangle C O B$, we have

$$
\begin{aligned}
& A O=C O \\
& O D=O B
\end{aligned}
$$

[Given]

$$
\angle A O D=\angle C O B
$$

[Vertically opposite angles]
So, $\triangle A O D \cong \triangle C O B$
$\therefore \quad \angle 1=\angle 2$
[By SAS congruence]
[By C.P.C.T.]
But they form a pair of alternate interior angles.
$\therefore \quad A D \| B C$
Similarly, $A B \| D C$
$\therefore \quad A B C D$ is a parallelogram.
And a parallelogram having its all sides equal is a rhombus.
$\therefore \quad A B C D$ is a rhombus.
Now, in $\triangle A B C$ and $\triangle B A D$, we have

$$
\begin{aligned}
& A C=B D \\
& B C=A D \\
& A B=B A
\end{aligned}
$$

[Given]
[Proved]
$\therefore \quad \triangle A B C \cong \triangle B A D$
[Common]
$\therefore \quad \angle A B C=\angle B A D$
[By SSS congruence]
[By C.P.C.T.] ...(v)
Now, since $A D \| B C$ and $A B$ is a transversal.
$\therefore \quad \angle A B C+\angle B A D=180^{\circ}$
[Interior angles on the same side of the transversal]
$\Rightarrow \quad \angle A B C=\angle B A D=90^{\circ}$
[By (v) and (vi)]
So, rhombus $A B C D$ is having one angle equal to 90°.
Thus, $A B C D$ is a square.
6. We have a parallelogram $A B C D$ in which diagonal $A C$ bisects $\angle A \Rightarrow \angle 1=\angle 2$
(i) Since $A B C D$ is a parallelogram.
$\therefore \quad A B \| D C$ and $A C$ is a transversal.

$\therefore \quad \angle 1=\angle 3$
[Alternate interior angles]
Also, $B C \| A D$ and $A C$ is a transversal.
$\therefore \quad \angle 2=\angle 4 \quad$ [Alternate interior angles]
Also, $\angle 1=\angle 2$
$[\because A C$ bisects $\angle A] \ldots(3)$
From (1), (2) and (3), we have
$\angle 3=\angle 4 \Rightarrow A C$ bisects $\angle C$.
(ii) In $\triangle A B C$, we have
$\angle 1=\angle 4$
[From (2) and (3)]
$\Rightarrow \quad B C=A B$
$[\because$ Sides opposite to equal angles of a triangle are equal]
Similarly, $A D=D C$
Also, $A B C D$ is a parallelogram
[Given]
$\therefore \quad A B=D C$
From (4), (5) and (6), we have
$A B=B C=C D=D A$
Thus, $A B C D$ is a rhombus.
7. We have, a rhombus $A B C D$
$\therefore \quad A B=B C=C D=D A$
Also, $A B \| C D$ and $A D \| B C$
Now, in $\triangle A D C$,

$$
\begin{equation*}
A D=C D \Rightarrow \angle 1=\angle 2 \tag{i}
\end{equation*}
$$

[Angles opposite to equal sides of a triangle are equal] Also, since $A D \| B C$ and $A C$ is the transversal.
$\therefore \quad \angle 1=\angle 3 \quad$ [Alternate interior angles]
From (i) and (ii), we have

$$
\angle 2=\angle 3
$$

Since, $A B \| D C$ and $A C$ is transversal.
$\therefore \quad \angle 2=\angle 4 \quad$ [Alternate interior angles]
From (i) and (iv), we have

$$
\begin{equation*}
\angle 1=\angle 4 \tag{iv}
\end{equation*}
$$

From (iii) and (v), we have
$A C$ bisects $\angle C$ as well as $\angle A$.
Similarly, we can prove that $B D$ bisects $\angle B$ as well as $\angle D$.
8. We have a rectangle $A B C D$ such that $A C$ bisects $\angle A$ as well as $\angle C$.
$\Rightarrow \quad \angle 1=\angle 4$ and $\angle 2=\angle 3$

(i) Since every rectangle is a parallelogram.
$\therefore \quad A B C D$ is a parallelogram.
$\Rightarrow \quad A B \| C D$ and $A C$ is a transversal.
$\therefore \quad \angle 2=\angle 4 \quad$ [Alternate interior angles]
From (1) and (2), we have

$$
\begin{equation*}
\angle 3=\angle 4 \tag{2}
\end{equation*}
$$

In $\triangle A B C, \angle 3=\angle 4$
$\Rightarrow A B=B C$
[Sides opposite to equal angles of a triangle are equal] $\Rightarrow A B C D$ is a rectangle having adjacent sides equal.
$\Rightarrow \quad A B C D$ is a square.
(ii) Since $A B C D$ is a square and diagonals of a square bisect the opposite angles.
So, $B D$ bisects $\angle B$ as well as $\angle D$.
9. We have parallelogram $A B C D, B D$ is the diagonal and points P and Q are such that
$D P=B Q$
[Given]
(i) Since $A D \| B C$ and $B D$ is a transversal.
$\therefore \quad \angle A D B=\angle C B D$
[Alternate interior angles]
$\Rightarrow \quad \angle A D P=\angle C B Q$
Now, in $\triangle A P D$ and $\triangle C Q B$, we have
$A D=C B \quad[$ Opposite sides of parallelogram $A B C D]$
$P D=Q B$
[Given]
$\angle A D P=\angle C B Q$
$\therefore \quad \triangle A P D \cong \triangle C Q B$
[Proved]
[By SAS congruence]
(ii) Since $\triangle A P D \cong \triangle C Q B$
$\therefore \quad A P=C Q$
(iii) Since $A B \| C D$ and $B D$ is a transversal.
$\therefore \quad \angle A B D=\angle C D B \quad$ [Alternate interior angles]
$\Rightarrow \quad \angle A B Q=\angle C D P$
Now, in $\triangle A Q B$ and $\triangle C P D$, we have

$$
Q B=P D
$$

[Given]

$$
\angle A B Q=\angle C D P
$$

$A B=C D \quad$ [Opposite sides of a parallelogram]
$\therefore \quad \triangle A Q B \cong \triangle C P D$
[By SAS congruence]
(iv) Since $\triangle A Q B \cong \triangle C P D$
[Proved]
$\therefore \quad A Q=C P$
[By C.P.C.T.]
(v) In quadrilateral $A P C Q$,
$A P=C Q$ and $A Q=C P$
[Proved]
$\therefore \quad A P C Q$ is a parallelogram.
10. (i) In $\triangle A P B$ and $\triangle C Q D$, we have
$\angle A P B=\angle C Q D$
[Each equals 90°]
$A B=C D \quad$ [Opposite sides of a parallelogram]
$\angle A B P=\angle C D Q[\because A B \| C D$ and $B D$ is a transversal
\Rightarrow Alternate angles are equal]
$\therefore \quad \triangle A P B \cong \triangle C Q D$
[By AAS congruence]
(ii) Since $\triangle A P B \cong \triangle C Q D$
[Proved]
$\therefore \quad A P=C Q$
[By C.P.C.T.]
11. (i) In quadrilateral $A B E D$, we have
$A B=D E$
[Given]
$A B \| D E$
[Given]
So, $A B E D$ is a quadrilateral in which a pair of opposite sides $(A B$ and $D E)$ are parallel and of equal length.
$\therefore \quad A B E D$ is a parallelogram.
(ii) In quadrilateral $B E F C$, we have
$B C=E F$
[Given]
$B C \| E F$
[Given]
So, $B E F C$ is a quadrilateral in which a pair of opposite sides $(B C$ and $E F)$ are parallel and of equal length.
$\therefore \quad B E F C$ is a parallelogram.
(iii) $\because A B E D$ is a parallelogram
[Proved]
$\therefore \quad A D \| B E$ and $A D=B E$
[Opposite sides of a parallelogram] ...(1)
Also, $B E F C$ is a parallelogram.
[Proved]
$\therefore \quad B E \| C F$ and $B E=C F$
[Opposite sides of a parallelogram] ...(2)
From (1) and (2), we have
$A D \| C F$ and $A D=C F$
(iv) Since $A D \| C F$ and $A D=C F$
[Proved]
So, in quadrilateral $A C F D$, one pair of opposite sides ($A D$ and $C F$) are parallel and equal in length.
$\therefore \quad$ Quadrilateral $A C F D$ is a parallelogram.
(v) Since $A C F D$ is a parallelogram.
[Proved]
$\therefore \quad A C=D F \quad$ [Opposite sides of a parallelogram]
(vi) In $\triangle A B C$ and $\triangle D E F$, we have
$A B=D E$
$B C=E F$
[Given]
[Given]
$A C=D F$
$\therefore \quad \triangle A B C \cong \triangle D E F$
[Proved]
[By SSS congruence]
12. Produce $A B$ to E and draw $C E \| A D$. Join $A C$ and $B D$.
(i) $\because \quad A B\|D C \Rightarrow A E\| D C$

Also, $A D \| C E$ [By construction]
$\therefore \quad A E C D$ is a parallelogram.
$\Rightarrow A D=C E$

[Opposite sides of a parallelogram]
But $A D=B C \quad$ [Given]
By (1) and (2), we have, $B C=C E$
Now, in $\triangle B C E$, we have $B C=C E$
$\Rightarrow \quad \angle C E B=\angle C B E$
[Angles opposite to equal sides of a triangle are equal]
Also, $\angle A B C+\angle C B E=180^{\circ} \quad$ [Linear pair]
and $\angle A+\angle C E B=180^{\circ}$
[Interior angles on same side of transversal]
From (4) and (5), we get
$\angle A B C+\angle C B E=\angle A+\angle C E B$
$\Rightarrow \quad \angle A B C=\angle A$
[From (3)]
$\Rightarrow \quad \angle B=\angle A$
(ii) $\because A B \| C D$ and $A D$ is a transversal.
$\therefore \quad \angle A+\angle D=180^{\circ}$
[Interior angles on same side of transversal]
Similarly, $\angle B+\angle C=180^{\circ}$
From (7) and (8), we get
$\angle A+\angle D=\angle B+\angle C$
$\Rightarrow \quad \angle C=\angle D$
[From (6)]
(iii) In $\triangle A B C$ and $\triangle B A D$, we have
$A B=B A$
[Common]
$B C=A D$
[Given]
$\angle A B C=\angle B A D \quad$ [Proved]
$\therefore \quad \triangle A B C \cong \triangle B A D$
[By SAS congruence]
$\begin{array}{lr}\text { (iv) Since } \triangle A B C \cong \triangle B A D & \text { [Proved] } \\ \therefore \quad A C=B D & \text { [By C.P.C.T.] }\end{array}$

EXERCISE - 8.2

1. (i) In $\triangle A C D$, we have
S is the mid-point of $A D$ and R is the mid-point of $C D$.
$\therefore \quad S R=\frac{1}{2} A C$ and $S R \| A C$
[By mid-point theorem]
(ii) In $\triangle A B C$,
P is the mid-point of $A B$ and Q is the mid-point of $B C$.
$\therefore \quad P Q=\frac{1}{2} A C$ and $P Q \| A C$
[By mid-point theorem]
From (1) and (2), we get
$P Q=\frac{1}{2} A C=S R$ and $P Q\|A C\| S R$
$\Rightarrow \quad P Q=S R$ and $P Q \| S R$
(iii) In quadrilateral $P Q R S$, we have
$P Q=S R$ and $P Q \| S R$
[Proved]
$\therefore \quad P Q R S$ is a parallelogram.
2. Join $A C$.

In $\triangle A B C, P$ and Q are the mid-points of $A B$ and $B C$ respectively.

$\therefore \quad P Q=\frac{1}{2} A C$ and $P Q \| A C$
[By mid-point theorem] In $\triangle A D C, R$ and S are the mid-points of $C D$ and $D A$ respectively.
$\therefore \quad S R=\frac{1}{2} A C$ and $S R \| A C$
[By mid-point theorem]
From (i) and (ii), we get
$P Q=\frac{1}{2} A C=S R$ and $P Q\|A C\| S R$
$\Rightarrow P Q=S R$ and $P Q \| S R$
$\therefore \quad P Q R S$ is a parallelogram.
Now, in $\triangle E R C$ and $\triangle E Q C$, $\angle 1=\angle 2 \quad$ [The diagonals of a rhombus bisect the opposite angles]

$$
\begin{align*}
C R & =C Q \\
C E & =E C
\end{align*} \quad\left[\because C D=C B \Rightarrow \frac{C D}{2}=\frac{C B}{2}\right]
$$

$\therefore \quad \triangle E R C \cong \triangle E Q C$
$\Rightarrow \quad \angle 3=\angle 4$
[By SAS congruence]
But $\angle 3+\angle 4=180^{\circ}$
[By C.P.C.T.]
From (iv) and (v), we get
$\Rightarrow \quad \angle 3=\angle 4=90^{\circ}$
Now, since $P Q \| A C$ and $E Q$ is transversal.
$\therefore \quad \angle R Q P+\angle 5=180^{\circ}$
[Interior angles on the same side of transversal]
$\Rightarrow \quad \angle R Q P=180^{\circ}-\angle 5$
But $\angle 5=\angle 3$
[Vertically opposite angles]
$\therefore \quad \angle 5=90^{\circ}$
So, $\angle R Q P=180^{\circ}-\angle 5=90^{\circ}$
$\therefore \quad$ One angle of parallelogram $P Q R S$ is 90°.
Thus, $P Q R S$ is a rectangle.
3. Join $A C$.

In $\triangle A B C, P$ and Q are mid-points of $A B$ and $B C$ respectively.
$\therefore \quad P Q=\frac{1}{2} A C$ and $P Q \| A C$

...(i) [By mid-point theorem]
Similarly, in $\triangle A D C$, we have
$S R=\frac{1}{2} A C$ and $S R \| A C$
From (i) and (ii), we get

$$
P Q=S R \text { and } P Q \| S R
$$

$\therefore \quad P Q R S$ is a parallelogram.
Now, in $\triangle P A S$ and $\triangle P B Q$, we have

$$
\begin{array}{lr}
\angle A=\angle B & {\left[\text { Each equals } 90^{\circ}\right]} \\
A P=B P & {[\because P \text { is the mid-point of } A B]} \\
A S=B Q & {\left[\because A D=B C \Rightarrow \frac{1}{2} A D=\frac{1}{2} B C\right]}
\end{array}
$$

$\therefore \quad \triangle P A S \cong \triangle P B Q$
[By SAS congruence]
$\Rightarrow \quad P S=P Q$
[By C.P.C.T.]
Also, $P S=Q R$ and $P Q=S R$.
[Opposite sides of a parallelogram]
So, $P Q=Q R=R S=S P$
i.e., $P Q R S$ is a parallelogram having all of its sides equal. Hence, $P Q R S$ is a rhombus.
4. Let G be the point where $E F$ intersect diagonal $B D$. In $\triangle D A B, E$ is the mid-point of $A D$ and $E G \| A B$

$$
[\because E F \| A B]
$$

$\therefore \quad G$ is the mid-point of $B D$
[By converse of mid-point theorem]
Again in $\triangle B D C$, we have
G is the mid-point of $B D$ and $G F \| D C$.
$[\because A B \| D C$ and $E F\|A B \Rightarrow E F\| D C]$
$\therefore \quad F$ is the mid-point of $B C$.
[By converse of mid-point theorem]
5. Since, the opposite sides of a parallelogram are parallel and equal.
$\therefore \quad A B\|D C \Rightarrow A E\| F C$
and $A B=D C$
$\Rightarrow \quad \frac{1}{2} A B=\frac{1}{2} D C \Rightarrow A E=F C$
From (i) and (ii), we have
$A E C F$ is a parallelogram.
Now, in $\triangle D Q C$, we have
F is the mid-point of $D C$ and $F P \| C Q \quad[\because A F \| C E]$
$\therefore \quad P$ is the mid-point of $D Q$.
[By converse of mid-point theorem]
$\Rightarrow \quad D P=P Q$
Similarly, in $\triangle B A P, E$ is the mid-point of $A B$ and $E Q \| A P$.
$[\because A F \| C E]$
$\therefore \quad Q$ is the mid-point of $B P$.
[By converse of mid-point theorem]
$\Rightarrow \quad B Q=P Q$
$\therefore \quad$ From (iii) and (iv), we have
$D P=P Q=B Q$
So, the line segments $A F$ and $E C$ trisect the diagonal $B D$.
6. Let $A B C D$ be a quadrilateral and P, Q, R and S be the mid-points of $A B, B C, C D$ and $D A$.
Join $P Q, Q R, R S$ and $S P$. Let us also join $P R$ and $S Q$.

Now, in $\triangle A B C, P$ and Q are the mid-points of $A B$ and $B C$ respectively.
$\therefore \quad P Q \| A C$ and $P Q=\frac{1}{2} A C$
[By mid-point theorem]
Similarly, $R S \| A C$ and $R S=\frac{1}{2} A C$
By (i) and (ii), we get $P Q \| R S$ and $P Q=R S$
$\therefore \quad P Q R S$ is a parallelogram.
Since, the diagonals of a parallelogram bisect each other, i.e., $P R$ and $S Q$ bisect each other.

Thus, the line segments joining the mid-points of opposite sides of a quadrilateral bisect each other.
7. (i) In $\triangle A C B$,
M is the mid-point of $A B$. [Given] $M D \| B C$ [Given]
$\therefore \quad D$ is the mid-point of $A C$.
[By converse of mid-point theorem]
(ii) Since, $M D \| B C$ and $A C$ is a transversal.
$\therefore \quad \angle M D A=\angle B C A$
[Corresponding angles]
But $\angle B C A=90^{\circ}$
[Given]
$\therefore \angle M D A=90^{\circ}$
$\Rightarrow \quad M D \perp A C$.
(iii) In $\triangle A D M$ and $\triangle C D M$, we have

$$
\angle A D M=\angle C D M \quad\left[\text { Each equals } 90^{\circ}\right]
$$

$M D=D M$
[Common]
$A D=C D \quad[\because D$ is the mid-point of $A C]$
$\therefore \quad \triangle A D M \cong \triangle C D M$
[By SAS congruence]
$\Rightarrow M A=M C$
[By C.P.C.T.] ...(i)
Now, since M is the mid-point of $A B$.
[Given]
$\therefore \quad M A=\frac{1}{2} A B$
From (i) and (ii), we have
$C M=M A=\frac{1}{2} A B$

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

