Quadrilaterals

CHAPTER 8

NCERT FOCUS

SOLUTIONS

EXERCISE - 8.1	4. Let <i>ABCD</i> be a square such that its diagonals <i>AC</i> and <i>BD</i> intersect at <i>O</i> .	
 Let the angles of a quadrilateral be 3x, 5x, 9x and 13x. ∴ 3x + 5x + 9x + 13x = 360° [Angle sum property of a quadrilateral] 	D = C	
$\Rightarrow 30x = 360^{\circ} \Rightarrow x = 12^{\circ}$	(i) To prove that the diagonals are equal, <i>i.e.</i> ,	
$\therefore 3x = 3 \times 12^\circ = 36^\circ$	AC = BD.	
$5x = 5 \times 12^\circ = 60^\circ$	In $\triangle ABC$ and $\triangle BAD$, we have	
$9x = 9 \times 12^{\circ} = 108^{\circ}$	AB = BA [Common]	
$13x = 13 \times 12^{\circ} = 156^{\circ}$	BC = AD [Sides of a square]	
\therefore Required angles of the quadrilateral are 36°, 60°, 108° and 156°.	$\angle ABC = \angle BAD$ [Each equals 90°]	
	$\therefore \Delta ABC \cong \Delta BAD \qquad [By SAS congruence]$	
2. Let <i>ABCD</i> be a parallelogram such that $AC = BD$.	$\Rightarrow AC = BD \qquad [By C.P.C.T.](1)$	
In $\triangle ABC$ and $\triangle DCB$, we have D	(ii) To prove diagonals bisect each other.	
AC = DB [Given]	\therefore AD BC and AC is a transversal.	
AB = DC	[A square is a parallelogram]	
[Opposite sides of a parallelogram]	$\therefore \ \ \angle 1 = \angle 3 \qquad \qquad [Alternate interior angles]$	
BC = CB [Common]	Similarly, $\angle 2 = \angle 4$	
$\therefore \Delta ABC \cong \Delta DCB \qquad [By SSS congruence]$	Now, in $\triangle OAD$ and $\triangle OCB$, we have	
$\Rightarrow \angle ABC = \angle DCB \qquad [By C.P.C.T.] \dots (i)$	AD = CB [Sides of a square]	
Now, $AB \parallel DC$ and BC is a transversal.	$\angle 1 = \angle 3$ [Proved]	
[:: $ABCD$ is a parallelogram]	$\angle 2 = \angle 4$ [Proved]	
$\therefore \angle ABC + \angle DCB = 180^{\circ} \qquad \dots (ii)$	$\therefore \Delta OAD \cong \Delta OCB \qquad [By ASA congruence]$	
[Angles on the same side of a transversal] From (i) and (ii), we have $\angle ABC = \angle DCB = 90^{\circ}$	$\Rightarrow OA = OC \text{ and } OD = OB \qquad [By C.P.C.T.]$	
\Rightarrow ABCD is a parallelogram having an angle equal to	\Rightarrow Diagonals <i>AC</i> and <i>BD</i> bisect each other at <i>O</i> (2)	
90°.	(iii) To prove diagonals intersect at right angles. In $\triangle OBA$ and $\triangle ODA$, we have	
\therefore ABCD is a rectangle.	OB = OD [Proved]	
	BA = DA [Sides of a square]	
3. Let <i>ABCD</i> be a quadrilateral such that the diagonals	OA = AO [Common]	
AC and BD bisect each other at right angles.	$\therefore \Delta OBA \cong \Delta ODA \qquad \qquad [By SSS congruence]$	
In $\triangle AOB$ and $\triangle AOD$, we have	$\Rightarrow \angle AOB = \angle AOD \qquad [By C.P.C.T.] \dots (3)$	
AO = OA [Common] 0	\therefore $\angle AOB$ and $\angle AOD$ form a linear pair.	
OB = OD [O is the mid-point of BD]	$\therefore \angle AOB + \angle AOD = 180^{\circ}$	
$\angle AOB = \angle AOD$ [Each equals 90°] A	$\therefore \angle AOB = \angle AOD = 90^{\circ} $ [By (3)]	
$\therefore \Delta AOB \cong \Delta AOD [By SAS congruence]$	$\Rightarrow AC \perp BD$ (4)	
$\therefore AB = AD \qquad [By C.P.C.T.] \dots (i)$	From (1), (2) and (4), we get AC and BD are equal and	
Similarly, $AB = BC$ (ii)	bisect each other at right angles.	
BC = CD(iii)	5. Let <i>ABCD</i> be a quadrilateral such that diagonals <i>AC</i>	
And $CD = DA$ (iv)	and <i>BD</i> are equal and bisect each other at right angles.	
\therefore From (i), (ii), (iii) and (iv), we have $AB = BC = CD = DA$		
Thus, the given quadrilateral is a rhombus.		

Alternative solution : *ABCD* can be first proved a parallelogram. Then proving one pair of adjacent sides equal will result in rhombus.

Lot ARCD h

MtG 100 PERCENT Mathematics Class-9

Now, in $\triangle AOD$ and $\triangle AOB$, we have $\angle AOD = \angle AOB$ [Each equals 90°] [Common] AO = OAOD = OB[:: AC bisects BD] $\Delta AOD \cong \Delta AOB$ [By SAS congruence] $\Rightarrow AD = AB$ [By C.P.C.T.] ...(i) Similarly, we have AB = BC...(ii) BC = CD...(iii) CD = DA...(iv) From (i), (ii), (iii) and (iv), we have AB = BC = CD = DA.:. Quadrilateral *ABCD* has all sides equal. In $\triangle AOD$ and $\triangle COB$, we have AO = CO[Given] OD = OB[Given] $\angle AOD = \angle COB$ [Vertically opposite angles] So, $\triangle AOD \cong \triangle COB$ [By SAS congruence] $\therefore \angle 1 = \angle 2$ [By C.P.C.T.] But they form a pair of alternate interior angles. \therefore AD || BC Similarly, $AB \parallel DC$ \therefore *ABCD* is a parallelogram. And a parallelogram having its all sides equal is a rhombus. :. *ABCD* is a rhombus. Now, in $\triangle ABC$ and $\triangle BAD$, we have AC = BD[Given] BC = AD[Proved] AB = BA[Common] $\Delta ABC \cong \Delta BAD$ [By SSS congruence] *.*.. $\therefore \ \angle ABC = \angle BAD$ [By C.P.C.T.] ...(v) Now, since $AD \parallel BC$ and AB is a transversal. $\therefore \ \angle ABC + \angle BAD = 180^{\circ}$...(vi) [Interior angles on the same side of the transversal] $\Rightarrow \angle ABC = \angle BAD = 90^{\circ}$ [By (v) and (vi)]So, rhombus ABCD is having one angle equal to 90°. Thus, *ABCD* is a square. We have a parallelogram 6. ABCD in which diagonal AC bisects $\angle A \implies \angle 1 = \angle 2$ (i) Since *ABCD* is a parallelogram. \therefore *AB* || *DC* and *AC* is a transversal. [Alternate interior angles] ...(1) $\therefore \angle 1 = \angle 3$ Also, $BC \parallel AD$ and AC is a transversal. $\therefore \quad \angle 2 = \angle 4$ [Alternate interior angles] ...(2) Also, $\angle 1 = \angle 2$ [:: AC bisects $\angle A$] ...(3) From (1), (2) and (3), we have $\angle 3 = \angle 4 \implies AC$ bisects $\angle C$. (ii) In $\triangle ABC$, we have $\angle 1 = \angle 4$ [From (2) and (3)] $\Rightarrow BC = AB$...(4) [:: Sides opposite to equal angles of a triangle are equal] Similarly, AD = DC...(5) Also, ABCD is a parallelogram [Given]

2

 $\therefore AB = DC$...(6) From (4), (5) and (6), we have AB = BC = CD = DAThus, *ABCD* is a rhombus. 7. We have, a rhombus *ABCD* $\therefore AB = BC = CD = DA$ Also, AB || CD and AD || BC Now, in $\triangle ADC$, $AD = CD \Rightarrow \angle 1 = \angle 2$...(i) [Angles opposite to equal sides of a triangle are equal] Also, since *AD* || *BC* and *AC* is the transversal. [Alternate interior angles] ...(ii) $\therefore \angle 1 = \angle 3$ From (i) and (ii), we have $\angle 2 = \angle 3$...(iii) Since, *AB* || *DC* and *AC* is transversal. $\therefore \quad \angle 2 = \angle 4$ [Alternate interior angles] ...(iv) From (i) and (iv), we have $\angle 1 = \angle 4$...(v) From (iii) and (v), we have AC bisects $\angle C$ as well as $\angle A$. Similarly, we can prove that *BD* bisects $\angle B$ as well as ∠D.

8. We have a rectangle *ABCD* such that *AC* bisects $\angle A$ as well as $\angle C$.

$$\angle 1 = \angle 4 \text{ and } \angle 2 = \angle 3 \qquad \dots (1)$$

- (i) Since every rectangle is a parallelogram.
- \therefore *ABCD* is a parallelogram.
- \Rightarrow *AB* || *CD* and *AC* is a transversal.

 \therefore $\angle 2 = \angle 4$ [Alternate interior angles] ...(2) From (1) and (2), we have

 $\angle 3 = \angle 4$

 \Rightarrow

In $\triangle ABC$, $\angle 3 = \angle 4$ $\Rightarrow AB = BC$

[Sides opposite to equal angles of a triangle are equal]

- \Rightarrow *ABCD* is a rectangle having adjacent sides equal.
- \Rightarrow *ABCD* is a square.

(ii) Since *ABCD* is a square and diagonals of a square bisect the opposite angles.

So, *BD* bisects $\angle B$ as well as $\angle D$.

9. We have parallelogram *ABCD*, *BD* is the diagonal and points *P* and *Q* are such that

[Given]

- (i) Since $AD \parallel BC$ and BD is a transversal.
- $\therefore \quad \angle ADB = \angle CBD \qquad \qquad [Alternate interior angles]$
- $\Rightarrow \angle ADP = \angle CBQ$

DP = BQ

Now, in $\triangle APD$ and $\triangle CQB$, we have

	AD = CB	[Opposite side	es of parallelogram <i>ABCD</i>]
	PD = QB		[Given]
	$\angle ADP = \angle$	<i>CBQ</i>	[Proved]
<i>.</i>	$\Delta APD\cong \Delta$	CQB	[By SAS congruence]

Quadrilaterals

(ii) Since $\triangle APD \cong \triangle CQB$ [Proved] AP = CQ[By C.P.C.T.] (iii) Since *AB* || *CD* and *BD* is a transversal. $\angle ABD = \angle CDB$ [Alternate interior angles] ÷. $\angle ABQ = \angle CDP$ \Rightarrow Now, in $\triangle AQB$ and $\triangle CPD$, we have QB = PD[Given] $\angle ABQ = \angle CDP$ [Proved] AB = CD[Opposite sides of a parallelogram] *.*.. $\Delta AQB \cong \Delta CPD$ [By SAS congruence] (iv) Since $\triangle AQB \cong \triangle CPD$ [Proved] AO = CP[By C.P.C.T.] ÷. (v) In quadrilateral APCQ, AP = CQ and AQ = CP[Proved] APCQ is a parallelogram. **10.** (i) In $\triangle APB$ and $\triangle CQD$, we have $\angle APB = \angle CQD$ [Each equals 90°] AB = CD[Opposite sides of a parallelogram] $\angle ABP = \angle CDQ$ [:: *AB* || *CD* and *BD* is a transversal \Rightarrow Alternate angles are equal] $\Delta APB \cong \Delta CQD$ [By AAS congruence] ÷. (ii) Since $\triangle APB \cong \triangle CQD$ [Proved] AP = CQ[By C.P.C.T.] *.*... **11.** (i) In guadrilateral *ABED*, we have AB = DE[Given] AB || DE [Given] So, ABED is a quadrilateral in which a pair of opposite sides (*AB* and *DE*) are parallel and of equal length. ABED is a parallelogram. (ii) In quadrilateral BEFC, we have BC = EF[Given] $BC \parallel EF$ [Given] So, *BEFC* is a quadrilateral in which a pair of opposite sides (*BC* and *EF*) are parallel and of equal length. :. *BEFC* is a parallelogram. (iii) :: *ABED* is a parallelogram [Proved] \therefore AD || BE and AD = BE [Opposite sides of a parallelogram] ...(1) Also, *BEFC* is a parallelogram. [Proved] $BE \parallel CF$ and BE = CF*.*.. [Opposite sides of a parallelogram] ...(2) From (1) and (2), we have $AD \parallel CF$ and AD = CF(iv) Since $AD \parallel CF$ and AD = CF[Proved] So, in quadrilateral ACFD, one pair of opposite sides (AD and CF) are parallel and equal in length. Quadrilateral ACFD is a parallelogram. (v) Since *ACFD* is a parallelogram. [Proved] $\therefore AC = DF$ [Opposite sides of a parallelogram] (vi) In $\triangle ABC$ and $\triangle DEF$, we have AB = DE[Given] BC = EF[Given] AC = DF[Proved] $\Delta ABC \cong \Delta DEF$ [By SSS congruence] *.*...

12. Produce *AB* to *E* and draw *CE* || *AD*. Join AC and BD. (i) :: $AB \parallel DC \Rightarrow AE \parallel DC$ Also, *AD* || *CE* [By construction] AECD is a parallelogram. AD = CE \Rightarrow ...(1) [Opposite sides of a parallelogram] But AD = BC[Given] ...(2) By (1) and (2), we have, BC = CENow, in $\triangle BCE$, we have BC = CE $\Rightarrow \angle CEB = \angle CBE$...(3) [Angles opposite to equal sides of a triangle are equal] Also, $\angle ABC + \angle CBE = 180^{\circ}$ [Linear pair] ...(4) and $\angle A + \angle CEB = 180^{\circ}$...(5) [Interior angles on same side of transversal] From (4) and (5), we get $\angle ABC + \angle CBE = \angle A + \angle CEB$ $\angle ABC = \angle A$ [From (3)] \Rightarrow $\angle B = \angle A$ \Rightarrow ...(6) (ii) $\therefore AB \parallel CD$ and AD is a transversal. $\angle A + \angle D = 180^{\circ}$...(7) ÷. [Interior angles on same side of transversal] Similarly, $\angle B + \angle C = 180^{\circ}$...(8) From (7) and (8), we get $\angle A + \angle D = \angle B + \angle C$ $\Rightarrow \angle C = \angle D$ [From (6)] (iii) In $\triangle ABC$ and $\triangle BAD$, we have AB = BA[Common] BC = AD[Given] $\angle ABC = \angle BAD$ [Proved] [By SAS congruence] $\Delta ABC \cong \Delta BAD$ (iv) Since $\triangle ABC \cong \triangle BAD$ [Proved] AC = BD[By C.P.C.T.] · · . EXERCISE - 8.2

1. (i) In $\triangle ACD$, we have S is the mid-point of AD and R is the mid-point of CD.

$$\therefore SR = \frac{1}{2}AC \text{ and } SR \parallel AC \qquad \dots(1)$$
[By mid-point theorem]

(ii) In $\triangle ABC$,

P is the mid-point of *AB* and *Q* is the mid-point of *BC*.

$$\therefore PQ = \frac{1}{2}AC \text{ and } PQ \parallel AC \qquad \dots (2)$$
[By mid-point theorem]

$$PQ = \frac{1}{2}AC = SR \text{ and } PQ \parallel AC \parallel SR$$

 \Rightarrow PQ = SR and PQ || SR

(iii) In quadrilateral *PQRS*, we have PQ = SR and $PQ \parallel SR$

 \therefore *PQRS* is a parallelogram.

2. Join *AC*.

In $\triangle ABC$, *P* and *Q* are the mid-points of *AB* and *BC* respectively.

[Proved]

MtG 100 PERCENT Mathematics Class-9

² [By mid-point theorem] In $\triangle ADC$, *R* and *S* are the mid-points of *CD* and *DA* respectively.

$$\therefore SR = \frac{1}{2}AC \text{ and } SR \parallel AC \qquad \dots \text{(ii)}$$

[By mid-point theorem]

From (i) and (ii), we get

 $PQ = \frac{1}{2}AC = SR \text{ and } PQ || AC || SR$ ⇒ PQ = SR and PQ || SR ∴ PQRS is a parallelogram. ...(iii) Now, in ΔERC and ΔEQC,

 $\angle 1 = \angle 2$ [The diagonals of a rhombus bisect the opposite angles] $\therefore CD = CB \Rightarrow \frac{CD}{2} = \frac{CB}{2}$ CR = CQCE = EC[Common] [By SAS congruence] $\Delta ERC \cong \Delta EQC$ ÷. [By C.P.C.T.] \rightarrow $\angle 3 = \angle 4$...(iv) But $\angle 3 + \angle 4 = 180^{\circ}$ [Linear pair] ...(v) From (iv) and (v), we get $\Rightarrow \ \angle 3 = \angle 4 = 90^{\circ}$

Now, since $PQ \parallel AC$ and EQ is transversal.

 $\therefore \quad \angle RQP + \angle 5 = 180^{\circ}$

[Interior angles on the same side of transversal] $\Rightarrow \angle RQP = 180^\circ - \angle 5$

But $\angle 5 = \angle 3$ [Vertically opposite angles] $\therefore \ \angle 5 = 90^{\circ}$

So, $\angle RQP = 180^{\circ} - \angle 5 = 90^{\circ}$

 \therefore One angle of parallelogram *PQRS* is 90°. Thus, *PQRS* is a rectangle.

3. Join AC.

In $\triangle ABC$, *P* and *Q* are mid-points of *AB* and *BC* respectively.

~ 2(i) [By mid-point theorem]

Similarly, in $\triangle ADC$, we have

 $SR = \frac{1}{2}AC \text{ and } SR \parallel AC \qquad \dots (ii)$ From (i) and (ii), we get $PQ = SR \text{ and } PQ \parallel SR$ \therefore *PQRS* is a parallelogram.

Now, in $\triangle PAS$ and $\triangle PBQ$, we have

$$\angle A = \angle B$$

$$AP = BP$$

$$AS = BQ$$

$$\therefore APAS \cong \Delta PBQ$$

$$\Rightarrow PS = PQ$$

$$AS = QR \text{ and } PQ = SR.$$
[Each equals 90°]

$$\therefore P \text{ is the mid-point of } AB$$

$$\therefore AD = BC \Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$
[By SAS congruence]

$$By C.P.C.T.$$

[Opposite sides of a parallelogram] So, PQ = QR = RS = SP*i.e.*, PQRS is a parallelogram having all of its sides equal. Hence, PQRS is a rhombus.

4. Let *G* be the point where *EF* intersect diagonal *BD*. In ΔDAB , *E* is the mid-point of *AD* and *EG* || *AB*

G is the mid-point of *BD* [By converse of mid-point theorem]

Again in $\Delta B DC$, we have

F is the m

G is the mid-point of BD and $GF \parallel DC$.

$$[:: AB \parallel DC \text{ and } EF \parallel AB \implies EF \parallel DC]$$

nid-point of BC.

[By converse of mid-point theorem]

5. Since, the opposite sides of a parallelogram are parallel and equal.

$$\therefore AB \parallel DC \Rightarrow AE \parallel FC \qquad \dots (i)$$

and $AB = DC$

$$\Rightarrow \quad \frac{1}{2}AB = \frac{1}{2}DC \Rightarrow AE = FC \qquad \dots (ii)$$

From (i) and (ii), we have

AECF is a parallelogram.

Now, in ΔDQC , we have

F is the mid-point of *DC* and *FP* \parallel *CQ* [:: *AF* \parallel *CE*]

- ∴ *P* is the mid-point of *DQ*. [By converse of mid-point theorem] ⇒ DP = PQ ...(iii) Similarly, in ΔBAP , *E* is the mid-point of *AB* and *EQ* || *AP*.
- $\therefore Q \text{ is the mid-point of } BP.$

$$\Rightarrow BQ = PQ \qquad \dots (iv)$$

... From (iii) and (iv), we have

DP = PQ = BQ

So, the line segments AF and EC trisect the diagonal BD.

6. Let *ABCD* be a quadrilateral and *P*, *Q*, *R* and *S* be the mid-points of *AB*, *BC*, *CD* and *DA*.

Join PQ, QR, RS and SP. Let us also join PR and SQ.

÷.

Now, in $\triangle ABC$, *P* and *Q* are the mid-points of *AB* and *BC* respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC \qquad \dots \text{(i)}$$
[By mid-point theorem]

Similarly, $RS \parallel AC$ and $RS = \frac{1}{2}AC$...(ii) By (i) and (ii), we get

 $PQ \parallel RS$ and PQ = RS

- *PQRS* is a parallelogram.
- *.*.. Since, the diagonals of a parallelogram bisect each other,

i.e., *PR* and *SQ* bisect each other.

Thus, the line segments joining the mid-points of opposite sides of a quadrilateral bisect each other.

(i) In $\triangle ACB$, 7.

M is the mid-point of *AB*. [Given] $MD \parallel BC$ [Given] M

В

 \therefore *D* is the mid-point of *AC*.

[By converse of mid-point theorem]

- Since, *MD* || *BC* and *AC* is a transversal. (ii)
- *:*.. $\angle MDA = \angle BCA$ [Corresponding angles] But $\angle BCA = 90^{\circ}$ [Given]

 $\angle MDA = 90^{\circ}$ *.*..

- $MD \perp AC.$ \Rightarrow
- (iii) In $\triangle ADM$ and $\triangle CDM$, we have $\angle ADM = \angle CDM$ [Each equals 90°] MD = DM[Common] [: D is the mid-point of AC] AD = CD[By SAS congruence] *.*.. $\Delta ADM \cong \Delta CDM$ MA = MC[By C.P.C.T.] ...(i) \Rightarrow Now, since *M* is the mid-point of *AB*. [Given]

 $MA = \frac{1}{2}AB$ *:*..

From (i) and (ii), we have

$$CM = MA = \frac{1}{2}AB$$

D

...(ii)

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information