Quadrilaterals

SOLUTIONS

Let the angles of the quadrilateral be x, 2x, 4x and 5x.

Since sum of the angles of a quadrilateral is 360°.

$$\therefore x + 2x + 4x + 5x = 360^{\circ}$$

$$\Rightarrow$$
 12x = 360° \Rightarrow x = 30°

$$\therefore 2x = 2 \times 30^{\circ} = 60^{\circ},$$

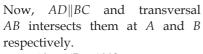
$$4x = 4 \times 30^{\circ} = 120^{\circ}$$
 and $5x = 5 \times 30^{\circ} = 150^{\circ}$

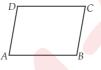
Since sum of the angles of a quadrilateral is 360°.

$$\therefore (x+20)^{\circ} + (x-20)^{\circ} + (2x+5)^{\circ} + (2x-5)^{\circ} = 360^{\circ}$$

$$\Rightarrow$$
 6x = 360 \Rightarrow x = 60

- No. As we know, the sum of all the angles of a quadrilateral is 360°, so a quadrilateral can have maximum of three obtuse angles.
- Since, *ABCD* is a parallelogram. Therefore, $AD \parallel BC$.





$$\therefore$$
 $\angle A + \angle B = 180^{\circ}$

[Interior angles on the same side of the transversal] Similarly, we can prove that

$$\angle B + \angle C = 180^{\circ}$$
, $\angle C + \angle D = 180^{\circ}$ and $\angle D + \angle A = 180^{\circ}$.

In quadrilateral ABCD,

$$AB \parallel DC$$
 [$l \parallel m \text{ (Given)}$] ...(i)
 $AD \parallel BC$ [$p \parallel q \text{ (Given)}$] ...(ii)

From (i) and (ii), ABCD is a parallelogram.

$$\Rightarrow \angle ABC + \angle BCD = 180^{\circ}$$

[Sum of consecutive angles of a parallelogram is 180°] $\angle ABC + 108^{\circ} = 180^{\circ}$ $[\angle BCD = 108^{\circ} (Given)]$

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - 108^{\circ} = 72^{\circ}$

Now,
$$\angle DAB = \angle BCD = 108^{\circ}$$
 and $\angle ADC = \angle ABC = 72^{\circ}$

Since, diagonals of a parallelogram bisect each other. Therefore, O is mid-point of AC

$$\therefore$$
 $OC = \frac{1}{2}AC = \frac{1}{2} \times 6.8 = 3.4 \text{ cm } [AC = 6.8 \text{ cm } (Given)]$

And
$$OD = \frac{1}{2}BD = \frac{1}{2} \times 5.6 = 2.8 \text{ cm } [BD = 5.6 \text{ cm (Given)}]$$

...(i)

In parallelogram PQRS, PQ = RS[Opposite sides of a parallelogram] Also, we have PM = RN[Given]

$$\therefore PQ - PM = RS - RN$$

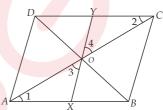
$$\Rightarrow MQ = SN$$

$$P \longrightarrow P$$

...(ii)

[:
$$PQRS$$
 is a parallelogram $\Rightarrow PQ \parallel SR$]

- From (i) and (ii), we have MQNS is a parallelogram
- [Opposite sides of a parallelogram] $MS \parallel NQ$
- Since *ABCD* is a parallelogram.
- $AB \parallel DC$
- $AB \parallel DC$ and transversal AC intersects them at Aand C.



Now, in $\triangle OAX$ and $\triangle OCY$, we have

$$\angle 1 = \angle 2$$
 [From (i)]
 $OA = OC$ [Diagonals of a parallelogram

bisect each other]
$$\angle 3 = \angle 4$$
 [Vertically opposite angles]

$$\triangle OAX \cong \triangle OCY \qquad [By ASA congruence]$$

$$\therefore OX = OY$$
 [By C.P.C.T.]

9. Since
$$\angle SRQ + \angle QRT = 180^{\circ}$$
 [Linear pair]

$$\Rightarrow \angle SRQ + 72^{\circ} = 180^{\circ}$$
 [: $\angle QRT = 72^{\circ}$ (Given)]

$$\Rightarrow$$
 $\angle SRQ = 180^{\circ} - 72^{\circ} = 108^{\circ}$

But
$$\angle SRP = \frac{1}{2} \angle SRQ$$

[: Diagonal bisects angle at vertex]

$$\Rightarrow \angle SRP = \frac{1}{2} \times 108^{\circ} = 54^{\circ} \qquad \dots (i)$$

In $\triangle SPR$, SP = SR

$$\Rightarrow \angle SPR = \angle SRP$$

[Angles opposite to equal sides are equal]

$$\Rightarrow \angle SPR = 54^{\circ}$$
 [From (i)]

10. In rectangle ABCD, $\angle BOC = 50^{\circ}$ And $\angle AOD = \angle BOC$

[Vertically opposite angles]

$$\therefore \angle AOD = 50^{\circ} \qquad \dots (i)$$

Now, we know that diagonals of a rectangle are equal and bisect each other.

$$\therefore OA = OD$$

$$\Rightarrow$$
 $\angle 1 = \angle 2$...(ii

[Angles opposite to equal sides are equal]

Now, in $\triangle ODA$, we have

$$\angle 1 + \angle 2 + \angle AOD = 180^{\circ}$$

$$\Rightarrow \angle 2 + \angle 2 + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 2\(\times 2 = 180\circ - 50\circ = 130\circ

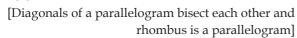
11. Let *ABCD* be a rhombus.

$$\therefore AB = BC = CD = DA$$

[Sides of a rhombus are equal]

Now, in $\triangle AOD$ and $\triangle COD$,

$$OA = OC$$



$$OD = OD$$

$$AD = CD$$

Therefore, $\triangle AOD \cong \triangle COD$

[Using (i) and (ii)]

But,
$$\angle AOD + \angle COD = 180^{\circ}$$

[Linear pair]
$$\therefore$$
 Fi

$$\Rightarrow \angle AOD = 90^{\circ}$$

So, the diagonals of a rhombus are perpendicular to each other.

12. In $\triangle PQR$, since X and Y are the mid-points of sides PQ and PR respectively. Therefore, by mid-point theorem, we have

$$XY \parallel QR$$
 and $XY = \frac{1}{2}QR$

$$\Rightarrow XY = \frac{1}{2} \times 10$$

$$[QR = 10 \text{ cm (Given)}]$$

$$\Rightarrow XY = 5 \text{ cm}$$

13. In ΔXYZ , L and M are mid-points of XY and XZ respectively. Therefore, by mid-point theorem, we have

$$LM = \frac{1}{2} YZ \qquad \dots (i)$$

Now, since M and N are mid-points of XZ and YZ respectively.

$$\therefore MN = \frac{1}{2}XY \qquad ...(ii)$$

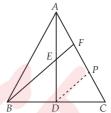
And *N* and *L* are mid-points of *YZ* and *XY* respectively.

$$\therefore NL = \frac{1}{2}XZ \qquad ...(iii)$$

Now, perimeter of $\Delta LMN = LM + MN + NL$

=
$$\frac{1}{2}YZ + \frac{1}{2}XY + \frac{1}{2}XZ$$
 [Using (i), (ii) and (iii)]
= $\frac{1}{2} \times 5.6 + \frac{1}{2} \times 4.4 + \frac{1}{2} \times 4.8$
[: $YZ = 5.6$ cm, $XY = 4.4$ cm, $XZ = 4.8$ cm (Given)]
= $2.8 + 2.2 + 2.4 = 7.4$ cm

14. We have, a $\triangle ABC$ in which AD is a median and E is the mid-point of AD. Let us draw $DP \parallel BF$.



Now in $\triangle ADP$, *E* is the mid-point of *AD* and *EF* \parallel *DP*.

- \therefore F is mid-point of AP.
- \Rightarrow AF = FP [By converse of mid-point theorem] Now in $\triangle FBC$, D is mid-point of BC and DP || BF.
- \therefore *P* is mid-point of *FC*.
- \Rightarrow FP = PC [By converse of mid-point theorem] Hence, AF = FP = PC

$$\therefore AF = \frac{1}{3}AC$$

15. Since, *D* and *E* are mid-points of *BC* and *AC* respectively. Therefore, by mid-point theorem, we have

$$DE = \frac{1}{2}AB \qquad ...(i)$$

Now, *E* and *F* are the mid-points of *AC* and *AB* respectively.

$$\therefore EF = \frac{1}{2}BC \qquad ...(ii)$$

And F and D are the mid-points of AB are BC respectively.

$$\therefore FD = \frac{1}{2}AC \qquad ...(iii)$$

Now, $\triangle ABC$ is an equilateral triangle

$$\therefore AB = BC = CA$$

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$

$$\Rightarrow$$
 $DE = EF = FD$ [Using (i), (ii) and (iii)] Hence, $\triangle DEF$ is an equilateral triangle.

MtG BEST SELLING BOOKS FOR CLASS 9

