Mid Term

SOLUTIONS

1. (d) $: \pi$ is irrational and $\frac{22}{7}$ is rational.
2. (b) : Lines parallel to same line are parallel to each other.
3. (b) : Diagonals of rhombus are perpendicular to each other.
4. Let $P(x)=x^{21}+101$

When $P(x)$ is divided by $(x+1)$, then for finding remainder put $x+1=0$ i.e., $x=-1$
Putting $x=-1$ in (i), we get

$$
\begin{aligned}
& P(-1)=(-1)^{21}+101=-1+101 \\
& \therefore \quad P(-1)=100
\end{aligned}
$$

Hence, the remainder is 100 .
5. Given, $A B=5 \mathrm{~cm}$ and $C D=3 \mathrm{~cm}$.
or $A B>C D$
Hence, $\angle A O B>\angle C O D$
$[\because$ Longer chord subtends greater angle at the centre].
6. Since, $P O Q$ is a line segment.

$\therefore \quad \angle P O Q=180^{\circ}$
$\Rightarrow \quad \angle P O A+\angle A O B+\angle B O Q=180^{\circ}$
$\Rightarrow 40^{\circ}+4 x+3 x=180^{\circ}$
$\Rightarrow 7 x=180^{\circ}-40^{\circ} \Rightarrow 7 x=140^{\circ} \Rightarrow x=20^{\circ}$
7. We have, $(x-7,-2)=(2, x+y)$

On comparing the coordinates, we get
$x-7=2 \Rightarrow x=9$
and $x+y=-2$
$\Rightarrow y=-2-9=-11$
$\therefore \quad 7(x-y)=7(9-(-11))=7 \times 20=140$
8. In triangles $I B X$ and $I B Y$, $\angle I X B=\angle I Y B$ (Each equal to 90°) $\angle I B X=\angle I B Y$ (Given)
$I B=I B \quad$ (Common)
$\triangle I B X \cong \triangle I B Y$

(By AAS congruency)
$I X=I Y$
(By C.P.C.T.)
9. Area of $\triangle A B C=\frac{1}{2} \times B C \times A B$

$$
\begin{equation*}
=\frac{1}{2} \times 12 \times 5 \tag{i}
\end{equation*}
$$

Also, area of $\triangle A B C=\frac{1}{2} \times A C \times B P$

$$
\begin{equation*}
=\frac{1}{2} \times 13 \times B P \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get
$\therefore \quad \frac{1}{2} \times 13 \times B P=\frac{1}{2} \times 12 \times 5$
$\Rightarrow 13 \times B P=12 \times 5 \Rightarrow B P=\frac{60}{13}=4.62 \mathrm{~cm}$
10. Join $B D$ and $A C$.

In $\triangle D C B$ and $\triangle C D A$,
$D C=D C$
$A D=B C$ $\angle A D C=\angle B C D$
(Common) (Given)

$\therefore \quad \triangle D C B \cong \triangle C D A \quad$ (By SAS congruency)
$\Rightarrow \quad \angle D A C=\angle D B C \quad$ (By C.P.C.T.)
$\therefore \quad A, B, C$ and D are on con-cyclic.
i.e., Points A, B, C and D lie on a circle.
11. We have, $P O \perp A B \therefore \angle P O B=\angle A O P=90^{\circ}$

Also, $x: y: z=2: 3: 4$
Let $x=2 a, y=3 a$ and $z=4 a$
Now, $x+y+z=\angle A O P=90^{\circ}$
$\Rightarrow 2 a+3 a+4 a=90^{\circ} \Rightarrow 9 a=90^{\circ} \Rightarrow a=10^{\circ}$
Hence, $x=2 a=2 \times 10^{\circ}=20^{\circ}$,
$y=3 a=3 \times 10^{\circ}=30^{\circ}$ and $z=4 a=4 \times 10=40^{\circ}$
12. In triangle $O A P$ and $O B P$,
$A P=P B$
(Given)
$\angle O P A=\angle O P B$
$O P=O P$
So, $\triangle O P A \cong \triangle O P B$
$\therefore \quad O A=O B$
Similarly, $\triangle O Q B \cong \triangle O Q C$
$\therefore \quad O B=O C$
(By SAS congruence)
(By C.P.C.T.)

From (i) and (ii), we get
$O A=O B=O C$
13. Let the two numbers be x and y such that $x>y$.

According to the question, we have
$4 x=10 y+2 \Rightarrow 2 x=5 y+1$, which is required linear
equation in two variables.
When $x=8,2 \times 8=5 y+1 \Rightarrow 5 y=15 \Rightarrow y=3$
When $x=3,2 \times 3=5 y+1 \Rightarrow 5 y=5 \Rightarrow y=1$
14. In $\triangle A B D$ and $\triangle Y C D$

$$
B D=C D \quad(\because \text { Given, } A D \text { is median })
$$

$\angle A D B=\angle Y D C$
(Vertically opposite angles)
$A D=Y D$
(Given)
$\therefore \quad \triangle A B D \cong \triangle Y C D$
$\therefore \quad A B=Y C$
(By SAS congruency)

In $\triangle Y B D$ and $\triangle A C D$
$B D=C D$
($\because A D$ is median)
$\angle Y D B=\angle A D C$ (Vertically opposite angles) $D Y=D A$
(Given)
$\therefore \quad \triangle Y B D \cong \triangle A C D \quad$ (By SAS congruency)
$B Y=C A \quad$ (By C.P.C.T.) ...(ii)
From (i) and (ii), opposite sides are equal.
So, $A B Y C$ is a parallelogram.
15. We have, $A B=7.6 \mathrm{~cm}, B C=8.4 \mathrm{~cm}$ and $C A=9.2 \mathrm{~cm}$

In $\triangle A B C, F$ and E are the mid-points of sides $A B$ and $A C$ respectively.
$\therefore \quad F E \| B C$ and $F E=\frac{1}{2} B C \quad$ [By mid-point theorem]
$\Rightarrow F E=\frac{1}{2} \times 8.4=4.2 \mathrm{~cm}$
Similarly, $D E=\frac{1}{2} A B=\frac{1}{2} \times 7.6=3.8 \mathrm{~cm}$
And $F D=\frac{1}{2} A C=\frac{1}{2} \times 9.2=4.6 \mathrm{~cm}$
Now, in $\triangle D E F, P$ and Q are mid-points of sides $E F$ and $F D$ respectively.
$\therefore \quad P Q \| D E$ and $P Q=\frac{1}{2} D E$
$\Rightarrow P Q=\frac{1}{2} \times 3.8=1.9 \mathrm{~cm}$
Similarly, $Q R=\frac{1}{2} F E=\frac{1}{2} \times 4.2=2.1 \mathrm{~cm}$
And, $P R=\frac{1}{2} F D=\frac{1}{2} \times 4.6=2.3 \mathrm{~cm}$
Now, perimeter of $\triangle P Q R=P Q+Q R+P R$

$$
=1.9+2.1+2.3=6.3 \mathrm{~cm}
$$

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

