Mid Term

SOLUTIONS

(d) : π is irrational and $\frac{22}{7}$ is rational. 1. 2. (b) : Lines parallel to same line are parallel to each other. 3. (b) : Diagonals of rhombus are perpendicular to each other. Let $P(x) = x^{21} + 101$ 4. ...(i) When P(x) is divided by (x + 1), then for finding remainder put x + 1 = 0 *i.e.*, x = -1Putting x = -1 in (i), we get $P(-1) = (-1)^{21} + 101 = -1 + 101$ P(-1) = 100*.*.. Hence, the remainder is 100. 5. Given, AB = 5 cm and CD = 3 cm. AB > CDor Hence, $\angle AOB > \angle COD$ [:: Longer chord subtends greater angle at the centre]. 6. Since, POQ is a line segment. 0 $\angle POQ = 180^{\circ}$... $\Rightarrow \angle POA + \angle AOB + \angle BOQ = 180^{\circ}$ \Rightarrow 40° + 4x + 3x = 180° \Rightarrow 7x = 180° - 40° \Rightarrow 7x = 140° \Rightarrow x = 20° We have, (x - 7, -2) = (2, x + y)7. On comparing the coordinates, we get $x - 7 = 2 \implies x = 9$ and x + y = -2 \Rightarrow y = -2 - 9 = -11 $7(x - y) = 7(9 - (-11)) = 7 \times 20 = 140$ *.*... In triangles *IBX* and *IBY*, 8. $\angle IXB = \angle IYB$ (Each equal to 90°) $\angle IBX = \angle IBY$ (Given) IB = IB(Common) $\Delta IBX \cong \Delta IBY$ (By AAS congruency) IX = IY(By C.P.C.T.)

9. Area of
$$\triangle ABC = \frac{1}{2} \times BC \times AB$$

$$= \frac{1}{2} \times 12 \times 5 \qquad ...(i) \qquad = \frac{1}{2} \times AC \times BP \qquad ...(ii)$$

$$= \frac{1}{2} \times 12 \times 5 \qquad ...(i) \qquad = \frac{1}{2} \times 13 \times BP$$
From (i) and (ii), we get

$$\therefore \quad \frac{1}{2} \times 13 \times BP = \frac{1}{2} \times 12 \times 5$$

$$\Rightarrow \quad 13 \times BP = 12 \times 5 \Rightarrow BP = \frac{60}{13} = 4.62 \text{ cm}$$
10. Join *BD* and *AC*.
In *ADCB* and *ACDA*,
DC = *DC*
(Given)

$$\angle ADCB \cong ACDA \qquad (By SAS congruency)$$

$$\Rightarrow \angle DAC = \angle DBC \qquad (Given)$$

$$\therefore \quad ADCB \cong \Delta CDA \qquad (By SAS congruency)$$

$$\Rightarrow \angle DAC = \angle DBC \qquad (By C.P.C.T.)$$

$$\therefore \quad A, B, C \text{ and } D \text{ ie on a circle.}$$
11. We have, $PO \perp AB \therefore \angle POB = \angle AOP = 90^{\circ}$
Also, $x: y: z = 2:3:4$
Let $x = 2a, y = 3a$ and $z = 4a$
Now, $x + y + z = \angle AOP = 90^{\circ}$

$$\Rightarrow \quad 2a + 3a + 4a = 90^{\circ} \Rightarrow 9a = 90^{\circ} \Rightarrow a = 10^{\circ}$$

Hence, $x = 2a = 2 \times 10^{\circ} = 20^{\circ}$,
 $y = 3a = 3 \times 10^{\circ} = 30^{\circ}$ and $z = 4a = 4 \times 10 = 40^{\circ}$
12. In triangle *OAP* and *OBP*,
AP = *PB*
(Given)
 $\angle OPA = \angle OPB$
(*By SAS congruency*)
 $\therefore OA = OB$
 $(...(i)$
(*By C.P.C.T.*)
(*By C.P.C.T.*)
Common
So, $\triangle OPA \cong \triangle OPB$
(*By SAS congruency*)
 $\therefore OA = OB$
 $(...(ii)$
(*By C.P.C.T.*)
From (i) and (ii), we get
 $OA = OB = OC$
13. Let the two numbers be *x* and *y* such that $x > y$.
According to the question, we have

 $4x = 10y + 2 \Rightarrow 2x = 5y + 1$, which is required linear

MtG 100 PERCENT Mathematics Class-9

equation in two variables.

When x = 8, $2 \times 8 = 5y + 1 \Rightarrow 5y = 15 \Rightarrow y = 3$ When x = 3, $2 \times 3 = 5y + 1 \Rightarrow 5y = 5 \Rightarrow y = 1$

14. In $\triangle ABD$ and $\triangle YCD$

BD = CD	('.' Given, AD is median)
$\angle ADB = \angle YDC$	(Vertically opposite angles)
AD = YD	(Given)
$\therefore \Delta ABD \cong \Delta YCD$	(By SAS congruency)
$\therefore AB = YC$	(By C.P.C.T.)(i)
In ΔYBD and ΔACD	A
BD = CD	($:: AD$ is median)
$\angle YDB = \angle ADC$ (Vert	ically opposite angles) $B\left< D \right> C$
DY = DA	(Given)
$\therefore \Delta YBD \cong \Delta ACD$	(By SAS congruency) \bigvee_{V}
BY = CA	(By C.P.C.T.)(ii)
From (i) and (ii), opposite sides are equal.	
So, <i>ABYC</i> is a parallelogram.	
15 We have $AB = 7$	A = 84 cm and $CA = 92$ cm

15. We have, AB = 7.6 cm, BC = 8.4 cm and CA = 9.2 cm In $\triangle ABC$, *F* and *E* are the mid-points of sides *AB* and *AC* respectively.

$$\therefore FE \parallel BC \text{ and } FE = \frac{1}{2}BC \qquad [By \text{ mid-point theorem}]$$

$$\Rightarrow FE = \frac{1}{2} \times 8.4 = 4.2 \text{ cm}$$

Similarly, $DE = \frac{1}{2}AB = \frac{1}{2} \times 7.6 = 3.8 \text{ cm}$
And $FD = \frac{1}{2}AC = \frac{1}{2} \times 9.2 = 4.6 \text{ cm}$
Now, in ΔDEF , P and Q are mid-points of sides EF and FD respectively.

$$\therefore PQ \parallel DE \text{ and } PQ = \frac{1}{2}DE$$

$$\Rightarrow PQ = \frac{1}{2} \times 3.8 = 1.9 \text{ cm}$$

Similarly, $QR = \frac{1}{2}FE = \frac{1}{2} \times 4.2 = 2.1 \text{ cm}$

And, $PR = \frac{1}{2}FD = \frac{1}{2} \times 4.6 = 2.3$ cm Now, perimeter of $\Delta PQR = PQ + QR + PR$

= 1.9 + 2.1 + 2.3 = 6.3 cm

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information