Post-Mid Term

SOLUTIONS

1. (c) : We know that angle of incidence $=$ angle of reflection.
$\therefore \quad \angle A Q P=\angle B Q R=x$ (say) and $\angle P Q R=116^{\circ}($ Given $)$
Now, $x+116^{\circ}+x=180^{\circ}$
$\Rightarrow 2 x=64^{\circ} \Rightarrow x=32^{\circ}$
$\therefore \quad \angle A Q P=32^{\circ}$
2. (d) : Given, abscissa of the point $=\frac{1}{2}=0.5$

Ordinate of the point $=\frac{-3}{4}=-0.75$
$\therefore \quad$ The coordinates of the point are $(0.5,-0.75)$
3. (b) : The sum of opposite angles of a cyclic quadrilateral is 180°.
4. The decimal representation of an irrational number is neither terminating nor repeating.
5. Here, side of an equilateral triangle $=$ ' $2 a^{\prime}$ units.

Now, area of equilateral triangle with side ' $2 a^{\prime}=\frac{\sqrt{3}}{4}(\text { side })^{2}$ $=\frac{\sqrt{3}}{4}(2 a)^{2}$ sq. units $=\sqrt{3} a^{2}$
6. Let the fourth angle be x.

Since, sum of angles of a quadrilateral is 360°.
$\therefore \quad 120^{\circ}+60^{\circ}+55^{\circ}+x=360^{\circ}$
$\Rightarrow x=360^{\circ}-\left(120^{\circ}+60^{\circ}+55^{\circ}\right)$
$\Rightarrow x=360^{\circ}-235^{\circ}=125^{\circ}$
7. As per given bar graph, the highest bar is of Nick channel while smallest bar is of Disney channel.
Number of children who watched Nick channel $=120$
Number of children who watched Disney channel $=60$ Hence, the required ratio $=60: 120=1: 2$
8. Given, $x^{2}-3 x-1=0$
$\Rightarrow x^{2}-3 x=1$
$\Rightarrow \quad x(x-3)=1$
$\Rightarrow \quad x-3=1 / x$
$\Rightarrow \quad x-1 / x=3$
Now, $\left(x-\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}-2$
$\Rightarrow \quad 3^{2}=x^{2}+\frac{1}{x^{2}}-2$
[Using (i)]
9.

In $\triangle A B C$ and $\triangle D E F$,
$A B=D E$
$B C=E F$
and $\angle A=\angle D$, which is not included angle between corresponding equal sides.
Thus, $\triangle A B C$ is not congruent to $\triangle D E F$.
10. Let $\angle R=3 x$ and $\angle S=2 x$

Now, $\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
(By angle sum property of a quadrilateral)
$\Rightarrow 250^{\circ}+3 x+2 x=360^{\circ} \Rightarrow 5 x=110^{\circ} \Rightarrow x=22^{\circ}$
$\therefore \quad \angle R=3 x=3 \times 22^{\circ}=66^{\circ}$
$\angle S=2 x=2 \times 22^{\circ}=44^{\circ}$
Now, $\angle R-\angle S=66^{\circ}-44^{\circ}=22^{\circ}$
11. (i)

(ii) Total runs scored $=10+2+8+9+2+5+6+1$
$+6+4=53$
12. Length of the pipe, $h=30 \mathrm{~cm}$

External radius of the pipe, $R=\frac{35}{2} \mathrm{~cm}=17.5 \mathrm{~cm}$
$\because \quad$ Thickness of the pipe $=2.5 \mathrm{~cm}$
$\therefore \quad$ Internal radius of the pipe, $r=(17.5-2.5) \mathrm{cm}$

$$
=15 \mathrm{~cm}
$$

Now, curved surface area of the pipe $=$ External curved surface area + Internal curved surface area
$=2 \pi R h+2 \pi r h=2 \pi h(R+r)$
$=2 \times \frac{22}{7} \times 30(17.5+15)=2 \times \frac{22}{7} \times 30 \times 32.5$
$=\frac{42900}{7}=6128.57 \mathrm{~cm}^{2}$
13. (i) We have, $x=-7 \Rightarrow x+7=0$
$\Rightarrow \quad 1 x+0 \cdot y+7=0$
(ii) We have, $y=3 \Rightarrow y-3=0$
$\Rightarrow 0 \cdot x+1 y-3=0$
(iii) We have, $4 x=3 \Rightarrow 4 x-3=0 \Rightarrow 4 x+0 \cdot y-3=0$
(iv) We have, $6 y=5 \Rightarrow 6 y-5=0 \Rightarrow 0 \cdot x+6 y-5=0$
$=325+450+225+150+200+50+125+300+400=2225$
14. Aman, Sahil and Dinesh form an equilateral triangle.
Let the length of each side of the equilateral triangle be $2 x$ metres.
Draw $A M \perp S D$.
Since $\triangle A S D$ is equilateral,
$\therefore \quad A M$ passes through O.
$\Rightarrow S M=\frac{1}{2} S D=\frac{1}{2}(2 x)$
$\Rightarrow S M=x$
Now, in right $\triangle A S M$, we have
$A M^{2}+S M^{2}=A S^{2}$
$\Rightarrow A M^{2}=A S^{2}-S M^{2}=(2 x)^{2}-x^{2}=4 x^{2}-x^{2}=3 x^{2}$
$\Rightarrow \quad A M=\sqrt{3} x$
Now, $O M=A M-O A=(\sqrt{3} x-30) \mathrm{m}$
Again, in right $\triangle O S M$, we have
$O S^{2}=S M^{2}+O M^{2}$
$30^{2}=x^{2}+(\sqrt{3} x-30)^{2}$
$\Rightarrow 900=x^{2}+3 x^{2}-60 \sqrt{3} x+900$
$\Rightarrow 4 x^{2}=60 \sqrt{3} x \Rightarrow 4 x=60 \sqrt{3} \Rightarrow x=15 \sqrt{3} \mathrm{~m}$
Now, $S D=2 x=2 \times 15 \sqrt{3} \mathrm{~m}=30 \sqrt{3} \mathrm{~m}$
Thus, the distance between each of them $=30 \sqrt{3} \mathrm{~m}$
15. (i) The bar graph represents the number of vehicles passing through a particular crossing of Gurgaon in different time intervals on a particular day.
(ii) The maximum traffic is between $9-10 \mathrm{hrs}$. The number of vehicles passed in this hour is 450 .
(iii) The minimum traffic is between $13-14 \mathrm{hrs}$. The number of vehicles passed during this hour is 50 .
(iv) The total number of vehicles passing through a crossing during a particular day

$$
\begin{aligned}
& =325+450+225+150+200+50+125+300+400 \\
& =2225
\end{aligned}
$$

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

