Pre-Mid Term

SOLUTIONS

1. (a) : (b) Every natural number is a whole number.
(c) Every integer is a rational number.
(d) Every natural number is a rational number.
2. (a): We have, $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7=4 x^{4}+5 x+7$

Here, the highest power of x is 4 .
$\therefore \quad$ Degree of the given polynomial is 4 .
3. (b) : The equation of x-axis is of the form $y=0$.
4. $\left[\left((16)^{\frac{-1}{2}}\right)^{\frac{-1}{4}}\right]^{2}=\left[\left(\left(4^{2}\right)^{\frac{-1}{2}}\right)^{\frac{-1}{4}}\right]^{2}=\left[4^{\frac{-1}{1} \times \frac{-1}{4}}\right]^{2}=4^{\frac{1}{4} \times 2}$
$=(4)^{\frac{1}{2}}=\left(2^{2}\right)^{\frac{1}{2}}=2^{1}=2$
5. We have, $f(x)=7 x^{2}-3 x+7$

Now, $f(2)=7(2)^{2}-3(2)+7=28-6+7=29$
Also, $f(-1)=7(-1)^{2}-3(-1)+7=7+3+7=17$
Also, $f(0)=7$
$\therefore \quad f(2)+f(-1)+f(0)=29+17+7=53$
6. The given equation is $3 x+2 y+7=0$

Put $x=\alpha-1, y=2 \alpha-1$ in (i), we get
$3(\alpha-1)+2(2 \alpha-1)+7=0 \Rightarrow 3 \alpha-3+4 \alpha-2+7=0$
$\Rightarrow 7 \alpha-5+7=0 \Rightarrow 7 \alpha=-2 \therefore \alpha=\frac{-2}{7}$
7. We know, $\frac{1}{5}=0.2$ and $\frac{2}{5}=0.4$
$\therefore \frac{1}{5}<0.303003000 \ldots<\frac{2}{5}$
$0.303003000 \ldots$ being a non-terminating, non-recurring decimal expression, is an irrational number.
8. We have, $y-x=2$

We have, the following table of solutions for (i)

x	0	-2
y	2	0

Plotting the points $(0,2),(-2,0)$ on the graph paper, we get

From the graph, $(0,2)$ and $(-2,0)$ are the points of
intersection of $y-x=2$ with y-axis and x-axis respectively.
9. We have, $4^{44}+4^{44}+4^{44}+4^{44}=4^{x}$
$\Rightarrow 4^{44}[1+1+1+1]=4^{x} \Rightarrow 4^{44}(4)=4^{x}$
$\Rightarrow \quad 4^{44+1}=4^{x} \Rightarrow 4^{45}=4^{x}$
$\therefore \quad x=45$
(On comparing powers)
10. (i) N, Q
(ii) T, P
(iii) Q, R, S
(iv) L
11. We have, $\frac{5+\sqrt{3}}{7-4 \sqrt{3}}=94 a+3 \sqrt{3} b$

On rationalising the L.H.S. we get
$\frac{5+\sqrt{3}}{7-4 \sqrt{3}} \times \frac{7+4 \sqrt{3}}{7+4 \sqrt{3}}=94 a+3 \sqrt{3} b$
$\Rightarrow \quad \frac{35+20 \sqrt{3}+7 \sqrt{3}+12}{49-48}=94 a+3 \sqrt{3} b$
$\Rightarrow \quad \frac{27 \sqrt{3}+47}{1}=94 a+3 \sqrt{3} b$
On comparing we get, $3 b=27$ and $47=94 a$
$\Rightarrow \quad b=9$ and $a=\frac{1}{2}$
So, $a+b=\frac{1}{2}+9=\frac{19}{2}=9.5$
12. We have, $(3 x-1)^{3}=6 a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$
$\Rightarrow \quad(3 x)^{3}-(1)^{3}-3 \times 3 x \times 1(3 x-1)$
$=6 a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \quad\left[\because(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\right]$
$\Rightarrow 27 x^{3}-1-9 x(3 x-1)=6 a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$
$\Rightarrow \quad 27 x^{3}-27 x^{2}+9 x-1=6 a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$
Comparing the coefficient of x^{3}, x^{2}, x and x^{0}, we get
$6 a_{3}=27 \Rightarrow a_{3}=9 / 2, a_{2}=-27, a_{1}=9$ and $a_{0}=-1$
Now, $a_{3}+a_{2}+a_{1}+a_{0}=\frac{9}{2}-27+9-1$

$$
=\frac{9}{2}-19=\frac{9-38}{2}=\frac{-29}{2}=-14.5
$$

13. Given, $\triangle A B C$ and $\triangle A B D$ are equilateral triangles.

In $\triangle A B C, A B=B C=A C=a$ units
In $\triangle A B D, A B=B D=A D=a$ units
Altitude of triangle, $O C=\sqrt{a^{2}-\left(\frac{a}{2}\right)^{2}}$
$\Rightarrow \quad O C=O D=\frac{\sqrt{3}}{2} a$
$\therefore \quad$ Coordinates of C and D are $\left(0, \frac{\sqrt{3}}{2} a\right)$ and $\left(0, \frac{-\sqrt{3}}{2} a\right)$.
14. Let total number of students in the class be y.

Let the number of boys in the class be x, then the required equation is $x=\frac{3}{4} y \Rightarrow y=\frac{4}{3} x$
So, 2 solutions are
When $x=15, y=20$
When $x=60, y=80$
Now, if $y=40$, then
$40=\frac{4}{3} x \Rightarrow x=\frac{3}{4} \times 40=30$
So, the number of boys is 30 in class of 40 students.
15. Let $p(x)=2 x^{3}-7 x^{2}-3 x+c$

If $p(x)$ is exactly divisible by $(2 x+3)$, then by factor theorem, we have
$p\left(-\frac{3}{2}\right)=0$
$\left(\because 2 x+3=0 \Rightarrow x=-\frac{3}{2}\right)$

$$
\begin{aligned}
& \Rightarrow 2\left(-\frac{3}{2}\right)^{3}-7\left(-\frac{3}{2}\right)^{2}-3\left(-\frac{3}{2}\right)+c=0 \\
& \Rightarrow 2\left(-\frac{27}{8}\right)-7\left(\frac{9}{4}\right)+\frac{9}{2}+c=0 \\
& \Rightarrow \quad-\frac{27}{4}-\frac{63}{4}+\frac{9}{2}+c=0 \\
& \Rightarrow \quad-\frac{45}{2}+\frac{9}{2}+c=0 \\
& \Rightarrow \quad-18+c=0 \quad \Rightarrow \quad c=18 \\
& \therefore \quad p(x)=2 x^{3}-7 x^{2}-3 x+18 \\
&=2 x^{3}+3 x^{2}-10 x^{2}-15 x+12 x+18 \\
&=x^{2}(2 x+3)-5 x(2 x+3)+6(2 x+3) \\
&=(2 x+3)\left(x^{2}-5 x+6\right) \\
&=(2 x+3)\left(x^{2}-2 x-3 x+6\right) \\
&=(2 x+3)[x(x-2)-3(x-2)] \\
&=(2 x+3)(x-2)(x-3)
\end{aligned}
$$

mtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information

