# Circles

[Using (i)]

### **SOLUTIONS**

- **1.** (d) : Since, tangent is perpendicular to the radius through the point of contact.
- $\therefore OA \perp AP$
- :. By Pythagoras theorem, in right angle  $\triangle AOP$  $OA^2 = OP^2 - PA^2 = 10^2 - 8^2 = 36 \implies OA = 6 \text{ cm}$
- $\therefore$  *OB* = *OA* = 6 cm [Radii of the same circle]
- **2.** (c) : We know that length of tangents drawn from an external point to the circle are equal.

 $\therefore BR = BP = 5 \text{ cm}, AR = AQ = 3 \text{ cm}$ and QC = PC = 7 - 3 = 4 cmSo, BC = BP + PC = 5 + 4 = 9 cm

**3.** (c) : Since, tangent is perpendicular to the radius through the point of contact.

 $\therefore \angle OTP = 90^{\circ}$ 

In  $\triangle OTP$ ,  $OP^2 = OT^2 + PT^2$  [By Pythagoras theorem]  $\Rightarrow 10^2 = 6^2 + PT^2 \Rightarrow PT^2 = 100 - 36 = 64 \Rightarrow PT = 8 \text{ cm}$ 

4. (c) : CR = CQ = 3 cm, BQ = BP = 5 cm, AS = AP = 6 cm and DS = DR = 4 cm

- :. Perimeter of quadrilateral ABCD = [(6 + 5) + (5 + 3) + (3 + 4) + (4 + 6)] cm = (11 + 8 + 7 + 10) cm = 36 cm.
- 5. We have,  $\angle AOB + \angle APB = 180^{\circ}$

[::  $\angle AOB$  and  $\angle APB$  are supplementary]  $\angle APB = 180^\circ - 107^\circ = 73^\circ$ 

6. Since, AB || PR and  $QOL \perp AB$  (:  $OQ \perp PR$ )

 $\therefore$  OL bisects chord AB.

 $\therefore \quad \Delta AQB \text{ is isosceles.}$ 

 $\Rightarrow \ \angle LQA = \angle LQB$ 

 $\Rightarrow$ 

But,  $\angle LQB = 90^\circ - 67^\circ = 23^\circ$ 

$$\therefore \quad \angle AQB = \angle LQA + \angle LQB = 2(23^\circ) = 46^\circ$$

7. We have, 
$$AB = 7$$
 cm,  $BC = 9$  cm and  $CA = 6$  cm  
Now,  $AR = AP = r$  (say) [Radii of the same circle]  
 $BP = BQ = x$  (say)  
 $CR = CQ = y$  (say)  
 $\therefore r + x = 7$  ...(i)  
 $x + y = 9$  ...(ii)  
 $y + r = 6$  ...(iii)

Subtracting (ii) from (i), we get

r - y = -2

Adding (iii) and (iv), we get

 $2r = 4 \implies r = 2 \text{ cm}$ 

**8.** Since, tangents drawn from an external point are equal.

| $\therefore BQ = BR$     | [Tangents from <i>B</i> ](i) |
|--------------------------|------------------------------|
| CQ = CP                  | [Tangents from C](ii)        |
| Now, $BC + BQ = CQ = 11$ | [Using (ii)]                 |

$$\Rightarrow$$
 7 + BQ = 11

- $\Rightarrow BQ = 11 7 = 4 \text{ cm}$
- $\therefore BR = 4 \text{ cm}$
- 9. We have,  $\angle OAT = 90^{\circ}$  [:: Tangent is perpendicular to the radius through the point of contact.] In right angle  $\triangle OAT$ ,

$$\frac{AT}{OT} = \cos 30^\circ \Rightarrow \frac{AT}{8} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow AT = 4\sqrt{3}$$
 cm

**10.** Two parallel tangents of a circle can be drawn only at the end points of the diameter.

In figure,  $l_1 \parallel l_2$ 

 $\Rightarrow \text{ Distance between } l_1 \text{ and } l_2, AB$ = Diameter of the circle = 2 × r = 2 × 9 = 18 cm

$$\Rightarrow CP = 4.5 \text{ cm}$$
  
Now,  $AC = CP = 4.5 \text{ cm}$  [:: Tangents from an external point are equal.]

$$\therefore AB = AC + BC = 4.5 + 4.5 = 9 \text{ cm}$$

**12.** Since, tangent is perpendicular to the radius through the point of contact.

 $\therefore \angle OPT = 90^{\circ}$ 

$$\therefore \quad \angle OPQ = 90^\circ - 50^\circ = 40^\circ$$
  
Also,  $OP = OQ$ 

$$JP = OQ$$

$$\Rightarrow \angle OQP = \angle OPQ = 40^{\circ}$$

13. (i) (b):



Here, OS the is radius of circle.

Since radius at the point of contact is perpendicular to tangent.

So,  $\angle OSA = 90^{\circ}$ 

...(iv)

(ii) (d): Since, length of tangents drawn from an external point to a circle are equal.  $AS = AD_{B} = PO$ 

$$\therefore AS = AP, BP = BQ, CQ = CR and DR = DS ...(1)$$

e end points  
and 
$$l_2$$
, AB

[Radii of same circle]

#### MtG 100 PERCENT Mathematics Class-10

(iii) (a) : AP = AS = AD - DS = AD - DR(Using (1)(iv) (a) : Here, the two circles have a common point of = 11 - 7 = 4 cm to both the circles. (iv) (b): In quadrilateral OQCR, D (v) (a)  $\angle QCR = 60^{\circ}$  (Given) And  $\angle OQC = \angle ORC = 90^{\circ}$ **16.** (i) We have, AP = AQ, BP = BD, CQ = CD0 S 0 [Since, radius at the point of contact is perpendicular to length] tangent.] Now, AB + BC + AC = 7 + 5 + 8 = 20 cm  $\angle QOR = 360^{\circ} - 90^{\circ} - 90^{\circ} - 60^{\circ} = 120^{\circ}$ *:*..  $\Rightarrow AB + BD + CD + AC = 20 \text{ cm}$ (v) (c) : From (1), we have AS = AP, DS = DR, BQ = BP and CQ = CR(ii) Let AF = AE = x cmAdding all above equations, we get AS + DS + BQ + CQ = AP + DR + BP + CRequal in length] AD + BC = AB + CDGiven, BD = FB = 9 cm, CD = CE = 3 cm $\Rightarrow$ In  $\triangle ABC$ ,  $AB^2 = AC^2 + BC^2$ **14.** (i) Here,  $OA^2 = OD^2 + AD^2$  $(AF + FB)^{2} = (AE + EC)^{2} + (BD + CD)^{2}$  $\Rightarrow$  $\Rightarrow AD = \sqrt{25-9} = 4 \text{ cm}$  $(x+9)^2 = (x+3)^2 + 12^2$  $\rightarrow$ 18x + 81 = 6x + 9 + 144 $\Rightarrow$ As OD bisects AB, then CT  $12x = 72 \implies x = 6 \text{ cm}$  $\Rightarrow$  $AB = 2AD = 2 \times 4 = 8$  cm *.*.. AB = 6 + 9 = 15 cm (ii) Here,  $PB^2 + OB^2 = OP^2 = PA^2 + OA^2$ (iii) Here, AP = AS = 4 cm Then  $PB^2 + 9 = 144 + 25 \implies PB^2 = 160$ :. DS = DR = 10 - 4 = 6 cm $\Rightarrow PB = 4\sqrt{10}$  cm So, CD = DR + CR = 6 + 3 = 9 cm(iii) Here,  $OP^2 - PB^2 = OB^2$  and  $OP^2 - PA^2 = OA^2$ (iv) Here  $\angle OAP = 90^{\circ}$  $\therefore OB = \sqrt{100 - 64} = \sqrt{36} = 6 \text{ cm}$ In  $\triangle AOP$  and  $\triangle BOP$  $\angle OAP = \angle OBP$  [90° each] and  $OA = \sqrt{100 - 36} = \sqrt{64} = 8 \text{ cm}$ OA = OB [Radii of circle] AB = OA - OB = 8 - 6 = 2 cm*:*. PA = PB [Tangents drawn from (iv) Here, in right angled  $\triangle OBD$ , OB = 5 cm and an external point are equal]  $\Delta AOP \cong \Delta BOP$  [By SAS congruency] OD = 3 cm.*.*..  $\angle APO = \angle OPB [C.P.C.T]$ *.*.. :.  $BD = \sqrt{25 - 9} = \sqrt{16} = 4$  cm  $= 40^{\circ}$ Since, chord *BP* is bisected by radius *OD*.  $\angle BPA = 40^{\circ} + 40^{\circ} = 80^{\circ}$ *.*.. BP = 2BD = 8 cm*.*.. (v) For bigger circle, PA = PB(v) Let x be the radii of smaller circle. Now,  $OA^2 = OD^2 + AD^2$ length] Similarly, for smaller circle, *PB* = *PC*  $\Rightarrow$   $(x+4)^2 = x^2 + 12^2$ From (i) and (ii), we get  $\Rightarrow 8x + 16 = 144$ PA = PB = PC = 7 cm $\Rightarrow$ x = 16 cm17. В 2 15. (i) (d):  $\frac{A}{2}$ ÷.  $\angle OOR = 180^{\circ} - 70^{\circ} = 110^{\circ}$  $\Rightarrow$ Also, OQ = OR0  $\angle ROO = \angle ORO$  $\bar{C}$  $\overline{D}$ Two tangents of a circle are parallel only when they are drawn at ends of a diameter. So, PQ is the diameter of the circle.

(ii) (b) (iii) (d)

2

contact T and PQ is the tangent at T. So, PQ is the tangent

:: Tangents drawn from an external points are equal in

$$\Rightarrow AP + AQ = 20 \text{ cm} \Rightarrow 2AP = 20 \text{ cm} \Rightarrow AP = 10 \text{ cm}$$

:: Tangents drawn from an external point to a circle are

And BP = BQ = 2 cm. So, CR = CQ = 5 - 2 = 3 cm

 $P \leftarrow 40^{\circ}$ 

...(i) [:: Tangents drawn from an external point are equal in

...(ii)

$$PQ$$
 is a diameter[Given] $QOR + \angle ROP = 180^{\circ}$ [Linear pair]

[Radii of same circle] [:: Angles opposite to equal sides of triangle are equal.]

$$= \frac{180^{\circ} - 110^{\circ}}{2} = \frac{70^{\circ}}{2} = 35^{\circ} \qquad \dots(i)$$

Also,  $QP \perp PT$  [:: Tangent is perpendicular to the radius through the point of contact]  $\angle QPT = 90^{\circ}$ ...(ii) Circles

In 
$$\triangle QPT$$
,  $\angle RQO + \angle QPT + x = 180^{\circ}$   
 $\therefore x = 180^{\circ} - 90^{\circ} - 35^{\circ}$  [Using (i) and (ii)]  
 $= 55^{\circ}$ 

**18.** Since, *OB* = *OA* (radii of the same circle)  $\therefore \ \angle OBA = \angle OAB = 32^{\circ}$ Now, TAS is a tangent and OA is radius So,  $\angle OAS = 90^{\circ}$  $\Rightarrow 32^\circ + x = 90^\circ \Rightarrow x = 58^\circ$ In  $\triangle AOB$ ,  $\angle AOB = 180^{\circ} - 2 \times 32^{\circ} = 116^{\circ}$ 

[By angle sum property] Since, angle made by an arc at the centre of a circle is twice the angle subtended by the same arc at any point on the remaining part of the circle.

$$\therefore \quad \angle ACB = y = \left(\frac{116}{2}\right)^\circ = 58^\circ$$

**19.** Since, tangents drawn from an external point are equal.

PA = PB = 24 cm. ....

Also, 
$$\angle OBP = 90^{\circ}$$

[Since, tangent is perpendicular to the radius through the point of contact.]

In  $\triangle POB$ , we have

 $OP^2 = OB^2 + BP^2$ [By Pythagoras theorem]  $25^2 = OB^2 + 24^2$  $\rightarrow$ 

 $OB^2 = 625 - 576 = 49 \implies OB = 7 \text{ cm}$  $\Rightarrow$ 

20. Since tangent is perpendicular to the radius through the point of contact.

 $\therefore \quad \angle OAP = 90^{\circ}$ 

Now, in  $\triangle OAP$ ,

$$\sin\left(\angle OPA\right) = \frac{OA}{OP} = \frac{r}{2r} = \frac{1}{2r}$$

 $\angle OPA = 30$  $\Rightarrow$ 

 $\angle APB = 2(\angle OPA) = 2 \times 30^\circ = 60^\circ$ ...(i) Also, AP = PB[∴ Tangents drawn from an external point are equal.]

 $\therefore \angle PAB = \angle PBA$ ...(ii) In  $\triangle PAB$ ,  $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$  $\Rightarrow 2\angle PAB = 180^\circ - 60^\circ = 120^\circ$ [Using (i) and (ii)]  $\Rightarrow \angle PAB = 60^{\circ}$ 

Hence,  $\angle PAB = \angle PBA = \angle APB = 60^{\circ}$ 

·.  $\Delta APB$  is an equilateral triangle.

21. Since, angle made by an arc at the centre of a circle is twice the angle subtended by the same arc at any point on the remaining part of the circle.

$$\therefore \ \angle AOQ = 2 \ \angle ABQ$$
  

$$\Rightarrow \ \angle ABQ = \frac{1}{2} \times 78^{\circ} = 39^{\circ}$$
  
In  $\triangle ABT$ ,  $\angle BAT + \angle ABT + \angle ATB = 180^{\circ}$   

$$\Rightarrow \ 90^{\circ} + 39^{\circ} + \angle ATB = 180^{\circ}$$
  

$$\Rightarrow \ \angle ATB = 51^{\circ}$$
  

$$\therefore \ \angle ATQ = 51^{\circ}$$
  
22. We have,  $\angle APB = 50^{\circ}$ 

[:: Tangents drawn from an external Now, PA = PBpoint are equal]

 $\angle PAB = \angle PBA$  $\Rightarrow$ 

In 
$$\triangle PAB$$
,  $\angle PAB + \angle PBA + \angle PAB = 180^{\circ}$ 

$$\Rightarrow 2 \angle PAB = 180^{\circ} - 50^{\circ} \Rightarrow \angle PAB = \frac{130^{\circ}}{2} = 65^{\circ}$$
  
Now,  $\angle OAB = 90^{\circ} - \angle PAB [\because OA \perp AP \Rightarrow \angle OAP = 90^{\circ}]$   
= 90^{\circ} - 65^{\circ} = 25^{\circ}

**23.** From the figure, it is clear that *O* and *Q* are centres of smaller and bigger circle respectively.

Now, 
$$OT = OQ = \frac{1}{2}(PQ) = \frac{14}{2} = 7 \text{ cm}$$

 $\therefore OR = 7 + 14 = 21 \text{ cm}$ 

 $\angle OTR = 90^{\circ}$  [:: Tangent is perpendicular to the radius through the point of contact.]

In right  $\triangle OTR$ ,

$$OT^{2} + RT^{2} = OR^{2}$$

$$\Rightarrow (7)^{2} + RT^{2} = (21)^{2} \Rightarrow RT^{2} = 441 - 49 = 392$$

$$\Rightarrow RT^{2} = 14 \times 14 \times 2 \Rightarrow RT = 14\sqrt{2} \text{ cm}$$

**24.** We have, OA = OB[Radii of the same circle]  $\angle 3 = \angle 1 = 35^{\circ}$  $\Rightarrow$ 

[:: Angles opposite to equal sides of a triangle are equal] But,  $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ 

property]

[By angle sum pr  

$$\Rightarrow 35^{\circ} + 35^{\circ} + \angle 2 = 180^{\circ}$$

$$\Rightarrow \angle 2 = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

Also,  $\angle 4 = -\frac{2}{2}$ 

[Since angle made by an arc at the centre of a circle is twice the angle

subtended by the same arc at any point on the remaining part of the circle.]

$$=\frac{1}{2}\times110^\circ=55^\circ$$

$$\Rightarrow \angle ACB = 55^{\circ}$$

**25.** We have,  $OP \perp OQ$ 

Also, 
$$OP \perp PT$$
 and  $OQ \perp TQ$ 

[:: Tangent is perpendicular to the radius through the point of contact]

$$\therefore \text{ In quadrilateral } OPTQ, \angle P = \angle Q = \angle O = 90^{\circ} \quad \dots(i)$$
  
Now,  $\angle P + \angle Q + \angle O + \angle T = 360^{\circ}$ 

We have, *OPTQ* is a square

Hence, PQ and OT are right bisectors of each other.

26. Given, a hexagon ABCDEF circumscribes a circle. Since, tangents from an external point are equal. 11  $\therefore$  AQ = AP, QB = BR, CS = CR, DS = DT, EU = ET, UF = FPNow, AB + CD + EF = (AQ + QB) +(CS + SD) + (EU + UF)= (AP + BR) + (CR + DT) + (ET + FP)= (AP + FP) + (BR + CR) + (DT + ET)= AF + BC + DE







#### 4

 $\Rightarrow \angle 2 + \angle 3 = 90^{\circ}$ 

#### MtG 100 PERCENT Mathematics Class-10

#### OR

Join *OC* Now,  $OC \perp CD$  [:: Tangent is perpendicular to the radius through the point of contact]

Also,  $OC = OA \Rightarrow \angle 1 = 30^{\circ}$ Now,  $\angle 1 + \angle 2 = 90^{\circ}$ A [Angle in a semicircle]  $\angle 2 = 90^{\circ} - 30^{\circ} = 60^{\circ}$ •  $\Rightarrow \angle 3 = 30^{\circ}$ In  $\triangle ACD$ ,  $\angle ACD + \angle CAD + \angle 4 = 180^{\circ}$  $\Rightarrow (30^\circ + 60^\circ + 30^\circ) + 30^\circ + \angle 4 = 180^\circ \Rightarrow \angle 4 = 30^\circ$ In  $\triangle BCD$ ,  $\angle 3 = \angle 4$  : BC = BD. **27.**  $OP \perp AB$  [:: Tangent is perpendicular to the radius through the point of contact]  $\therefore$  AP = BP [ $\therefore$  AB is chord to larger circle and  $OP \perp AB$ ]  $\therefore AP = \frac{8}{2} = 4 \text{ cm} [\because AB = 8 \text{ cm}]$  $OP = \frac{6}{2} = 3 \text{ cm}$  [:: Diameter of smaller circle = 6 cm] In right  $\triangle OAP$ ,  $OA^2 = OP^2 + AP^2$  $= 3^{2} + 4^{2} = 9 + 16 = 25 \implies OA = 5 \text{ cm}$ Thus, diameter of the larger circle is 10 cm.

**28.** Given, a circle with center *O*. *AB* is the diameter of this circle. *HK* is tangent to the circle at *P*. *AH* and *BK* are perpendicular to *HK* from *A* and *B* at *H* and *K* respectively.

Since, *AH* and *HP* are tangents from the external point *H*.  $\therefore AH = HP$ ...(i) Also, *KB* and *KP* are tangents from the external point *K*.  $\therefore BK = KP$ ...(ii) Adding (i) and (ii), we get AH + BK = HP + PK = HK...(iii)  $AB \perp AH$  and  $AB \perp BK$  $\cap$ [:: Tangent is perpendicular to the radius through the point of contact]  $\therefore \quad \angle 1 = \angle 2 = 90^{\circ}$ Also,  $AH \perp HK$ [Given]  $\Rightarrow \angle 3 = 90^{\circ}$ and  $BK \perp HK \Rightarrow \angle 4 = 90^{\circ}$ Thus,  $\angle 1 = \angle 2 = \angle 3 = \angle 4 = 90^{\circ}$ *AHKB* is a rectangle. *.*.. AB = HK...(iv)  $\rightarrow$ [:: Opposite sides of a rectangle are equal] From (iii) and (iv), AH + BK = AB**29.** Since, length of tangents drawn form an external point to a circle are equal. QS = QT = 14 cm,*.*.. RU = RT = 16 cm. Let, PS = PU = x cmThus, PQ = (x + 14) cm 16 cm 14 cm PR = (x + 16) cmand QR = 30 cm Q 14 cm 7 16 cm

Now, Area of  $\triangle PQR$ 

= Area of  $\Delta IQR$  + Area of  $\Delta IQP$  + Area of  $\Delta IPR$ 

$$\Rightarrow 336 = \frac{1}{2} (14+16) \times 8 + \frac{1}{2} (14+x) \times 8 + \frac{1}{2} (16+x) \times 8$$

 $\Rightarrow 84 = 30 + 14 + x + 16 + x \Rightarrow 24 = 2x \Rightarrow x = 12$ Hence, *PQ* = 26 cm and *PR* = 28 cm

**30.** We have, AB = 16 cm. Therefore, AL = BL = 8 cm In  $\Delta OLB$ , we have  $OB^2 = OL^2 + LB^2 \Rightarrow 10^2 = OL^2 + 8^2$  $\Rightarrow OL^2 = 100 - 64 = 36 \Rightarrow OL = 6$  cm Let PL = x and PB = y. Then, OP = (x + 6) cm In  $\Delta$ 's PLB and  $\Delta OBP$ , we have  $PB^2 = PL^2 + BL^2$  and  $OP^2 = OB^2 + PB^2$  $\Rightarrow y^2 = x^2 + 64$  and  $(x + 6)^2 = 100 + y^2$  $\Rightarrow (x + 6)^2 = 100 + x^2 + 64$ [Substituting the value of  $y^2$  in second equation]

$$\Rightarrow 12x = 128 \Rightarrow x = \frac{32}{3} \text{ cm}$$
  
$$\therefore \quad y^2 = x^2 + 64 \Rightarrow y^2 = \left(\frac{32}{3}\right)^2 + 64 = \frac{1600}{9} \Rightarrow y = \frac{40}{3} \text{ cm}$$
  
Hence,  $PA = PB = \frac{40}{3} \text{ cm}$   
OR

DR = DS = 5 cm[:: Tangents drawn from an external point are equal] AR = AD - DR = 23 - 5 = 18 cmAQ = AR = 18 cm[:: Tangents drawn from  $\partial$ S) an external point are equal] OB = AB - AO = 29 - 18 = 11 cmQB = BP = 11 cmLED ST Also,  $\angle OQB = \angle OPB = 90^{\circ}$ [:: Tangent at any point of circle is perpendicular to the radius through the point of contact] Also,  $\angle B = 90^{\circ}$ [Given] So, OQ = OP = radius = r[Given]  $\therefore$  *OQBP* is a square.  $\Rightarrow$  r = OP = OQ = QB = 11 cm [Sides of a square] Hence, radius (r) of the circle = 11 cm

**31.** In  $\triangle APO$ ,  $\angle P = 90^{\circ}$  [: Tangent and radius are perpendicular to each other] OP = 5 cm, AO = 13 cm A In  $\triangle APO$ , by Pythagoras theorem  $OA^2 = OP^2 + AP^2$   $\Rightarrow 13^2 = 5^2 + AP^2$  $\Rightarrow 169 - 25 = AP^2 \Rightarrow 12 = AP$ 

Since, tangents from an external point to a circle are equal.

$$\therefore AP = AQ, BP = BR, CQ = CR \qquad ...(i)$$
Perimeter of  $\triangle ABC = AB + BC + AC$ 

$$= AB + (BR + RC) + AC = AB + BP + CQ + AC \text{ [Using (i)]}$$

$$= AP + AQ = AP + AP = 2AP = 2 \times 12 = 24 \text{ cm}$$

P is per throus

Circles



5

## MtG BEST SELLING BOOKS FOR CLASS 10

. touche

Tally Solud

WebG

CLASS 10

NCERT

**F NGERTIPS** 



Province Year







Visit www.mtg.in for complete information