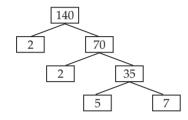
Real Numbers

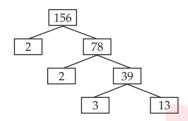
SOLUTIONS

EXERCISE - 1.1

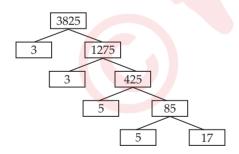
1. (i) Using factor tree method, we have



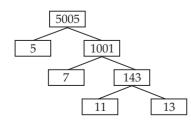
- $\therefore 140 = 2 \times 2 \times 5 \times 7 = 2^2 \times 5 \times 7$
- (ii) Using factor tree method, we have



- \therefore 156 = 2 × 2 × 3 × 13 = 2² × 3 × 13
- (iii) Using factor tree method, we have



- \therefore 3825 = 3 × 3 × 5 × 5 × 17 = 3² × 5² × 17
- (iv) Using factor tree method, we have



 $\therefore 5005 = 5 \times 7 \times 11 \times 13$

(v) Using factor tree method, we have

- \therefore 7429 = 17 × 19 × 23
- 2. (i) The prime factorisation of 26 and 91 is, $26 = 2 \times 13$ and $91 = 7 \times 13$
- \therefore LCM (26, 91) = 2 × 7 × 13 = 182 HCF (26, 91) = 13

Now, LCM × HCF = $182 \times 13 = 2366$ and $26 \times 91 = 2366$

- *i.e.*, LCM \times HCF = Product of two numbers.
- (ii) The prime factorisation of 510 and 92 is, $510 = 2 \times 3 \times 5 \times 17$ and $92 = 2 \times 2 \times 23$
- \therefore LCM (510, 92) = 2 × 2 × 3 × 5 × 17 × 23 = 23460

HCF(510, 92) = 2

Now, LCM \times HCF = 23460 \times 2 = 46920

and $510 \times 92 = 46920$

- i.e., LCM \times HCF = Product of two numbers.
- (iii) The prime factorisation of 336 and 54 is, $336 = 2 \times 2 \times 2 \times 2 \times 3 \times 7$ and $54 = 2 \times 3 \times 3 \times 3$
- .. LCM $(336, 54) = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 = 3024$ and HCF $(336, 54) = 2 \times 3 = 6$

Now, LCM \times HCF = 3024 \times 6 = 18144

Also, $336 \times 54 = 18144$

Thus, LCM \times HCF = Product of two numbers.

- 3. (i) The prime factorisation of 12, 15 and 21 is, $12 = 2 \times 2 \times 3$, $15 = 3 \times 5$ and $21 = 3 \times 7$
- :. HCF (12, 15, 21) = 3LCM $(12, 15, 21) = 2 \times 2 \times 3 \times 5 \times 7 = 420$
- (ii) We have, $17 = 1 \times 17$, $23 = 1 \times 23$, $29 = 1 \times 29$
- \Rightarrow HCF (17, 23, 29) = 1 LCM (17, 23, 29) = 17 × 23 × 29 = 11339
- (iii) The prime factorisation of 8, 9 and 25 is, $8 = 2 \times 2 \times 2$, $9 = 3 \times 3$ and $25 = 5 \times 5$
- :. HCF (8, 9, 25) = 1LCM $(8, 9, 25) = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 = 1800$
- **4.** Since, LCM \times HCF = Product of the numbers
- $\therefore LCM \times 9 = 306 \times 657$

$$\Rightarrow LCM = \frac{306 \times 657}{9} = 22338$$

Thus, LCM of 306 and 657 is 22338.

- 5. Here, n is a natural number and let 6^n ends with digit 0.
- \therefore 6ⁿ is divisible by 5.

But the prime factors of 6 are 2 and 3. *i.e.*, $6 = 2 \times 3$ \Rightarrow $6^n = (2 \times 3)^n$

i.e., In the prime factorisation of 6^n , there is no factor 5. So, by the fundamental theorem of Arithmetic, every composite number can be expressed as a product of primes and this factorisation is unique apart from the order in which the prime factorisation occurs.

 \therefore Our assumption that 6^n ends with digit 0, is wrong. Thus, there does not exist any natural number n for which 6^n ends with zero.

6. We have

 $7 \times 11 \times 13 + 13 = 13((7 \times 11) + 1) = 13(78)$, which cannot be a prime number because it has factors 13 and 78.

Also,
$$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$$

$$=5[7\times 6\times 4\times 3\times 2\times 1+1],$$

which is also not a prime number because it has a factor 5

Thus, $7 \times 11 \times 13 + 13$ and

 $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$ are composite numbers.

Time taken by Sonia to drive one round of the field = 18 minutes

Time taken by Ravi to drive one round of the field

= 12 minutes

LCM of 18 and 12 gives the exact number of minutes after which they meet again at the starting point.

Now,
$$18 = 2 \times 3 \times 3$$
 and $12 = 2 \times 2 \times 3$

:. LCM of 18 and
$$12 = 2 \times 2 \times 3 \times 3 = 36$$

Thus, they will meet again at the starting point after 36 minutes.

EXERCISE - 1.2

1. Let $\sqrt{5}$ be a rational number.

So, we can find integers a and b ($b \neq 0$ and a, b are co-

prime) such that
$$\sqrt{5} = \frac{a}{b}$$

$$\Rightarrow \quad \sqrt{5} \cdot b = a \qquad \qquad \dots (i)$$

Squaring both sides, we get $5b^2 = a^2$

$$5 \text{ divides } a^2 \Rightarrow 5 \text{ divide}$$

$$\Rightarrow$$
 5 divides $a^2 \Rightarrow$ 5 divides a ...(ii)

So, we can write a = 5m, where m is an integer.

 \therefore Putting a = 5m in (i), we get

$$\sqrt{5}b = 5m$$

$$\Rightarrow 5b^2 = 25m^2$$

[Squaring both sides]

$$\Rightarrow b^2 = 5m^2$$

$$\Rightarrow$$
 5 divides $b^2 \Rightarrow$ 5 divides b ...(iii)

From (ii) and (iii), we have, a and b have 5 as a common factor which contradicts the fact that a and b

 \therefore Our supposition that $\sqrt{5}$ is rational, is wrong. Hence, $\sqrt{5}$ is irrational.

- Let $3 + 2\sqrt{5}$ be a rational number.
- We can find two co-prime integers *a* and *b* such that

$$3 + 2\sqrt{5} = \frac{a}{b}$$
, where $b \neq 0$

$$\therefore \quad \frac{a}{b} - 3 = 2\sqrt{5} \implies \frac{a - 3b}{b} = 2\sqrt{5} \implies \frac{a - 3b}{2b} = \sqrt{5} \qquad \dots (i)$$

a and b are integers,

$$\therefore \frac{a-3b}{2h}$$
 is rational

So, $\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational.

:. Our supposition is wrong.

Hence, $3 + 2\sqrt{5}$ is irrational.

3. (i) We have
$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} = \frac{1}{2} \cdot \sqrt{2}$$

Let $\frac{1}{\sqrt{2}}$ be rational,

$$\therefore \frac{1}{2}(\sqrt{2})$$
 is rational

Let $\frac{1}{2}(\sqrt{2}) = \frac{a}{b}$, such that a and b are co-prime integers

and
$$b \neq 0$$
.

$$\therefore \quad \sqrt{2} = \frac{2a}{b} \qquad \dots (i)$$

Since, the division of two integers is rational.

$$\therefore \frac{2a}{b}$$
 is rational.

From (i), $\sqrt{2}$ is rational number, which contradicts the fact that $\sqrt{2}$ is irrational.

Our assumption is wrong,

Thus, $\frac{1}{\sqrt{2}}$ is irrational.

- (ii) Let $7\sqrt{5}$ is rational.
- \therefore We can find two co-prime integers a and b such that

$$7\sqrt{5} = \frac{a}{b}$$
, where $b \neq 0$

Now,
$$7\sqrt{5} = \frac{a}{b} \Rightarrow \sqrt{5} = \frac{a}{7b}$$
, which is a rational number.

[: a and b are integers.]

 $\Rightarrow \sqrt{5}$ is a rational number.

This contradicts the fact that $\sqrt{5}$ is an irrational number.

:. Our assumption is wrong.

Thus, we conclude that $7\sqrt{5}$ is irrational.

- (iii) Let $6 + \sqrt{2}$ is rational.
- \therefore We can find two co-prime integers a and b such that

$$6 + \sqrt{2} = \frac{a}{b}$$
, where $b \neq 0$

$$\therefore \frac{a}{h} - 6 = \sqrt{2} \implies \sqrt{2} = \frac{a - 6b}{h}, \text{ which is rational}$$

- $\sqrt{2}$ is rational which contradicts the fact that $\sqrt{2}$ is an irrational number.
- Our supposition is wrong.

Hence, $6 + \sqrt{2}$ is an irrational number.

MtG BEST SELLING BOOKS FOR CLASS 10

