Polynomials

SOLUTIONS

EXERCISE - 2.1

- (i) The given graph is parallel to x-axis, it does not intersect the *x*-axis.
- It has no zero.
- The given graph intersects the *x*-axis at one point only. (ii)
- It has one zero.
- (iii) The given graph intersects the *x*-axis at three points.
- It has three zeroes.
- (iv) The given graph intersects the x-axis at two points.
- It has two zeroes.
- The given graph intersects the *x*-axis at four points. (v)
- It has four zeroes.
- (vi) The given graph meets the *x*-axis at three points.
- It has three zeroes.

EXERCISE - 2.2

1. (i) We have, $p(x) = x^2 - 2x - 8$ $= x^{2} + 2x - 4x - 8 = x(x + 2) - 4(x + 2) = (x - 4)(x + 2)$ For p(x) = 0, we must have (x - 4)(x + 2) = 0

Either $x - 4 = 0 \Rightarrow x = 4$ or $x + 2 = 0 \Rightarrow x = -2$

The zeroes of $x^2 - 2x - 8$ are 4 and -2

Now, sum of the zeroes = $4 + (-2) = 2 = \frac{-(-2)}{1}$

$$= \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

Product of zeroes = $4 \times (-2) = \frac{-8}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Thus, the relationship between the zeroes and the coefficients in the polynomial $x^2 - 2x - 8$ is verified.

(ii) We have, $p(s) = 4s^2 - 4s + 1$

$$=4s^2-2s-2s+1=2s(2s-1)-1(2s-1)$$

= (2s - 1)(2s - 1)

For p(s) = 0, we have, $(2s - 1) = 0 \implies s = \frac{1}{2}$

The zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$

Sum of the zeroes = $\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(\text{Coefficient of } s)}{\text{Coefficient of } s^2}$

and product of zeroes = $\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$

Thus, the relationship between the zeroes and coefficients in the polynomial $4s^2 - 4s + 1$ is verified.

(iii) We have, $p(x) = 6x^2 - 3 - 7x$

$$= 6x^{2} - 7x - 3 = 6x^{2} - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3)$$
$$= (3x + 1)(2x - 3)$$

For p(x) = 0, we have,

Either $(3x + 1) = 0 \implies x = -\frac{1}{2}$

or
$$(2x - 3) = 0 \implies x = \frac{3}{2}$$

Thus, the zeroes of $6x^2 - 3 - 7x$ are $-\frac{1}{3}$ and $\frac{3}{2}$.

Now, sum of the zeroes = $-\frac{1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6}$

and product of zeroes = $\left(-\frac{1}{3}\right) \times \frac{3}{2} = \frac{-3}{6}$ = $\frac{\text{Constant term}}{2}$

$$= \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Thus, the relationship between the zeroes and coefficients in the polynomial $6x^2 - 3 - 7x$ is verified.

(iv) We have, $p(u) = 4u^2 + 8u = 4u(u + 2)$

For p(u) = 0, we have

Either $4u = 0 \Rightarrow u = 0$

or
$$u + 2 = 0 \Rightarrow u = -2$$

The zeroes of $4u^2 + 8u$ are 0 and – 2. Now, $4u^2 + 8u$ can be written as $4u^2 + 8u + 0$.

Sum of the zeroes = $0 + (-2) = -2 = \frac{-(8)}{4}$

-(Coefficient of *u*)

Coefficient of u^2 and the product of zeroes = $0 \times (-2) = 0 = \frac{0}{4}$

Constant term

Coefficient of u^2

Thus, the relationship between the zeroes and the coefficients in the polynomial $4u^2 + 8u$ is verified.

(v) We have, $p(t) = t^2 - 15 = (t^2) - (\sqrt{15})^2$

$$= (t + \sqrt{15})(t - \sqrt{15}) \qquad [\because a^2 - b^2 = (a+b)(a-b)]$$

For p(t) = 0, we have

Either $(t+\sqrt{15})=0 \Rightarrow t=-\sqrt{15}$

or
$$t - \sqrt{15} = 0 \implies t = \sqrt{15}$$

The zeroes of t^2 – 15 are – $\sqrt{15}$ and $\sqrt{15}$

Now, we can write $t^2 - 15$ as $t^2 + 0t - 15$.

Sum of the zeroes = $-\sqrt{15} + \sqrt{15} = 0 = \frac{-(0)}{1}$ $= \frac{-(\text{Coefficient of } t)}{\text{Coefficient of } t^2}$

Product of zeroes =
$$(-\sqrt{15}) \times (\sqrt{15}) = \frac{-(15)}{1}$$

= $\frac{\text{Constant term}}{\text{Coefficient of } t^2}$

Thus, the relationship between zeroes and the coefficients in the polynomial t^2 – 15 is verified.

(vi) We have,
$$p(x) = 3x^2 - x - 4$$

= $3x^2 + 3x - 4x - 4 = 3x(x + 1) - 4(x + 1) = (x + 1)(3x - 4)$
For $p(x) = 0$, we have

Either
$$(x + 1) = 0 \Rightarrow x = -1$$

or $3x - 4 = 0 \Rightarrow x = 4/3$

 \therefore The zeroes of $3x^2 - x - 4$ are -1 and 4/3

Now, sum of the zeroes =
$$(-1) + \frac{4}{3} = \frac{1}{3} = \frac{-(-1)}{3}$$

= $\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$
and product of zeroes = $(-1) \times \frac{4}{3} = \frac{(-4)}{3}$

and product of zeroes = $(-1) \times \frac{4}{3} = \frac{(-4)}{3}$ = $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Thus, the relationship between the zeroes and coefficients in the polynomial $3x^2 - x - 4$ is verified.

2. (i) Since, sum of the zeroes, $(\alpha + \beta) = \frac{1}{4}$ Product of the zeroes, $\alpha\beta = -1$ \therefore The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

$$= x^{2} - \left(\frac{1}{4}\right)x + (-1) = x^{2} - \frac{1}{4}x - 1 = \frac{1}{4}(4x^{2} - x - 4)$$

Since, $\frac{1}{4}(4x^2-x-4)$ and $(4x^2-x-4)$ have same zeroes, therefore $(4x^2-x-4)$ is the required quadratic polynomial.

(ii) Since, sum of the zeroes, $(\alpha + \beta) = \sqrt{2}$

Product of zeroes, $\alpha\beta = \frac{1}{3}$

.. The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

$$=x^{2}-(\sqrt{2})x+\left(\frac{1}{3}\right)=\frac{1}{3}(3x^{2}-3\sqrt{2}x+1)$$

Since, $\frac{1}{3}(3x^2 - 3\sqrt{2}x + 1)$ and $(3x^2 - 3\sqrt{2}x + 1)$ have same zeroes, therefore

 $(3x^2 - 3\sqrt{2}x + 1)$ is the required quadratic polynomial.

(iii) Since, sum of zeroes, $(\alpha + \beta) = 0$

Product of zeroes, $\alpha\beta = \sqrt{5}$

: The required quadratic polynomial is

$$x^{2} - (\alpha + \beta)x + \alpha\beta$$

= $x^{2} - (0)x + \sqrt{5} = x^{2} + \sqrt{5}$

(iv) Since, sum of zeroes, $(\alpha + \beta) = 1$

Product of zeroes, $\alpha\beta = 1$

.. The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - (1)x + 1 = x^2 - x + 1$

(v) Since, sum of the zeroes, $(\alpha + \beta) = -\frac{1}{4}$

Product of zeroes, $\alpha\beta = 1/4$

... The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

$$=x^{2}-\left(-\frac{1}{4}\right)x+\frac{1}{4}=x^{2}+\frac{x}{4}+\frac{1}{4}=\frac{1}{4}(4x^{2}+x+1)$$

Since, $\frac{1}{4}(4x^2 + x + 1)$ and $(4x^2 + x + 1)$ have same zeroes, therefore, the required quadratic polynomial is $(4x^2 + x + 1)$.

(vi) Since, sum of zeroes, $(\alpha + \beta) = 4$ and product of zeroes, $\alpha\beta = 1$

.. The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - 4x + 1$.

MtG BEST SELLING BOOKS FOR CLASS 10































