Triangles

SOLUTIONS

EXERCISE - 6.1

- (i) All circles are similar.
- (ii) All squares are similar.
- (iii) All equilateral triangles are similar.
- (iv) Two polygons of the same number of sides are similar, if
- (a) their corresponding angles are equal and
- (b) their corresponding sides are proportional.
- (i) (a) Any two circles are similar figures.
- Any two squares are similar figures.
- (ii) (a) A circle and a triangle are non-similar figures.
- (b) An isosceles triangle and a scalene triangle are nonsimilar figures.
- On observing the given figures, we find that their corresponding sides are proportional but their corresponding angles are not equal.
- The given figures are not similar.

EXERCISE - 6.2

(i) Since DE || BC

[Given]

:. Using the basic proportionality theorem, we have

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Since, AD = 1.5 cm, DB = 3 cm and AE = 1 cm

$$\therefore \frac{1.5 \text{ cm}}{3 \text{ cm}} = \frac{1 \text{ cm}}{EC}$$

$$\Rightarrow EC \times 1.5 = 1 \times 3$$

$$\Rightarrow EC = \frac{1 \times 3}{1.5} = \frac{1 \times 3 \times 10}{15} \Rightarrow EC = 2 \text{ cm}$$

- (ii) In $\triangle ABC$, $DE \parallel BC$
- :. Using the basic proportionality theorem, we have

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{AD}{72} = \frac{1.8}{5.4} \Rightarrow AD \times 5.4 = 1.8 \times 7.2$$

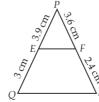
$$\Rightarrow AD = \frac{1.8 \times 7.2}{5.4} = \frac{18}{10} \times \frac{72}{10} \times \frac{10}{54} = \frac{24}{10} = 2.4$$

- ∴.
- (i) We have, PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm

$$\therefore \frac{PE}{EQ} = \frac{3.9 \text{ cm}}{3 \text{ cm}} = \frac{1.3}{1}$$

And
$$\frac{PF}{FR} = \frac{3.6 \text{ cm}}{2.4 \text{ cm}} = \frac{1.5}{1}$$

$$\therefore \quad \frac{1.3}{1} \neq \frac{1.5}{1} \quad \therefore \quad \frac{PE}{EQ} \neq \frac{PF}{FR}$$



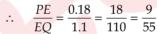
- EF is not parallel to QR.
- (ii) We have, PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm

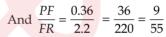
$$\therefore \frac{PE}{EQ} = \frac{4}{4.5} = \frac{40}{45} = \frac{8}{9}$$

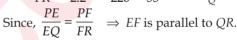
- \Rightarrow EF is parallel to QR.
- (iii) We have, PE = 0.18 cm, PQ = 1.28 cm, PF = 0.36 cm and PR = 2.56 cm

$$EQ = PQ - PE = 1.28 - 0.18 = 1.1 \text{ cm}$$

 $FR = PR - PF = 2.56 - 0.36 = 2.2 \text{ cm}$







3. In $\triangle ABC$, LM || CB

[Given]

:. Using the basic proportionality theorem, we have

$$\frac{AM}{MB} = \frac{AL}{LC} \implies \frac{MB}{AM} + 1 = \frac{LC}{AL} + 1$$

$$\Rightarrow \frac{MB + AM}{AM} = \frac{LC + AL}{AL} \Rightarrow \frac{AB}{AM} = \frac{AC}{AL}$$

$$\Rightarrow \frac{AM}{AB} = \frac{AL}{AC} \qquad ...(i)$$

Similarly, in $\triangle ACD$, $LN \parallel CD$

:. Using the basic proportionality theorem, we have

$$\frac{AL}{AC} = \frac{AN}{AD} \qquad \dots (ii)$$

From (i) and (ii), we get

$$\frac{AM}{AB} = \frac{AL}{AC} = \frac{AN}{AD} \Rightarrow \frac{AM}{AB} = \frac{AN}{AD}$$

- **4.** In $\triangle ABC$, $DE \parallel AC$ [Given]
- $\therefore \frac{BD}{DA} = \frac{BE}{EC}$ [By basic proportionality theorem] ...(i)

In $\triangle ABE$, $DF \parallel AE$

[Given]

$$\therefore \frac{BD}{DA} = \frac{BF}{FE}$$
 [By basic proportionality theorem] ...(ii)

From (i) and (ii), we get
$$\frac{BF}{FE} = \frac{BD}{DA} = \frac{BE}{EC} \Rightarrow \frac{BF}{FE} = \frac{BE}{EC}$$

5. In $\triangle PQO$, $DE \parallel OQ$

[Given]

:. Using the basic proportionality theorem, we have

$$\frac{PE}{EQ} = \frac{PD}{DO} \qquad ...(i)$$

Similarly, in $\triangle POR$, $DF \parallel OR$

[Given]

:. Using the basic proportionality theorem, we have

$$\frac{PD}{DO} = \frac{PF}{FR} \qquad \dots (ii)$$

From (i) and (ii), we get

$$\frac{PE}{EQ} = \frac{PD}{DO} = \frac{PF}{FR} \implies \frac{PE}{EQ} = \frac{PF}{FR}$$

Now, in $\triangle PQR$, E and F are two distinct points on PQ and PR respectively and $\frac{PE}{EQ} = \frac{PF}{FR}i.e.$, E and F divides

the two sides *PQ* and *PR* in the same ratio.

- \therefore By converse of basic proportionality theorem, $EF \parallel QR$.
- **6.** In $\triangle PQR$, O is a point and OP, OQ and OR are joined. We have points A, B, and C on OP, OQ and OR respectively such that $AB \parallel PQ$ and $AC \parallel PR$.

Now, in $\triangle OPQ$, $AB \parallel PQ$

[Given]

:. Using the basic proportionality theorem, we have

$$\therefore \frac{OA}{AP} = \frac{OB}{BQ} \qquad ...(i)$$

Again, in $\triangle OPR$, $AC \parallel PR$

[Given]

:. Using the basic proportionality theorem, we have

$$\frac{OA}{AP} = \frac{OC}{CR} \qquad ...(ii)$$

From (i) and (ii), we get

$$\frac{OB}{BQ} = \frac{OA}{AP} = \frac{OC}{CR} \implies \frac{OB}{BQ} = \frac{OC}{CR}$$

Now, in $\triangle OQR$, B is a point on OQ, C is a point on OR

and
$$\frac{OB}{BQ} = \frac{OC}{CR}$$

i.e., B and C divide the sides OQ and OR in the same ratio $\therefore BC \parallel QR$

[By converse of basic proportionality theorem]

- 7. Given, $\triangle ABC$, in which *D* is the mid-point of *AB* and *E* is a point on *AC* such that $DE \parallel BC$.
- :. Using basic proportionality theorem, we get

$$\frac{AD}{DB} = \frac{AE}{EC} \qquad ...(i)$$

But D is the mid-point of AB

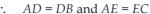
$$\therefore AD = DB$$

$$\Rightarrow \frac{AD}{DB} = 1$$
 ...(ii)

From (i) and (ii), we get

$$1 = \frac{AE}{EC} \implies EC = AE$$

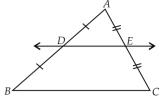
- \Rightarrow *E* is the mid-point of *AC*. Hence, it is proved that a line through the mid-point of one side of a triangle parallel to another side bisects the third side.
- **8.** We have $\triangle ABC$, in which D and E are the mid-points of sides AB and AC respectively.



$$\Rightarrow \frac{AD}{DB} = 1 \text{ and } \frac{AE}{EC} = 1$$

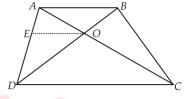
$$\Rightarrow \quad \frac{AD}{DB} = \frac{AE}{EC}$$

 \Rightarrow DE || BC



[By converse of basic proportionality theorem]

9. We have, a trapezium ABCD such that $AB \parallel DC$. The diagonals AC and BD intersect each other at O.



Let us draw *OE* parallel to either *AB* or *DC*.

In $\triangle ADC$, $OE \parallel DC$

[By construction]

Using basic proportionality theorem, we get

$$\frac{AE}{ED} = \frac{AO}{CO} \qquad ...(i$$

In $\triangle ABD$, $OE \parallel AB$

[By construction]

:. Using basic proportionality theorem, we get

$$\frac{ED}{AE} = \frac{DO}{BO} \implies \frac{AE}{ED} = \frac{BO}{DO}$$
 ...(ii)

From (i) and (ii), we get

$$\frac{AE}{ED} = \frac{BO}{DO} = \frac{AO}{CO} \implies \frac{BO}{DO} = \frac{AO}{CO} \implies \frac{AO}{BO} = \frac{CO}{DO}$$

Note: Remember this as a result.

10. It is given that $\frac{AO}{BO} = \frac{CO}{DO} \implies \frac{AO}{CO} = \frac{BO}{DO}$...(i)

Through O, draw $OE \parallel BA$

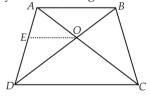
In $\triangle ADB$, $OE \parallel AB$

[By construction]

:. Using basic proportionality theorem, we get

$$\frac{DE}{EA} = \frac{DO}{BO}$$

$$\Rightarrow \frac{EA}{DE} = \frac{BO}{DO} \qquad ...(ii)$$



From (i) and (ii), we have

$$\frac{EA}{DE} = \frac{BO}{DO} = \frac{AO}{CO}$$

i.e., the points O and E on the sides AC and AD (of ΔADC) respectively are in the same ratio.

 \therefore Using basic proportionality theorem, we get $OE \parallel DC$

Also, $OE \parallel AB$

[By construction]

- $\Rightarrow AB \parallel DC$
- \Rightarrow *ABCD* is a trapezium.

EXERCISE - 6.3

1. (i) In $\triangle ABC$ and $\triangle PQR$,

$$\angle A = \angle P = 60^{\circ}$$

$$\angle B = \angle Q = 80^{\circ}$$

$$\angle C = \angle R = 40^{\circ}$$

Triangles 3

:. The corresponding angles are equal.

 \therefore $\triangle ABC \sim \triangle PQR$ [By AAA similarity criterion]

(ii) In $\triangle ABC$ and $\triangle QRP$,

$$\begin{split} \frac{AB}{QR} &= \frac{2}{4} = \frac{1}{2} \;,\; \frac{BC}{RP} = \frac{2.5}{5} = \frac{1}{2} \;,\\ \frac{CA}{PQ} &= \frac{3}{6} = \frac{1}{2} \Rightarrow \frac{AB}{QR} = \frac{BC}{RP} = \frac{CA}{PQ} \end{split}$$

 $\therefore \Delta ABC \sim \Delta QRP$

[By SSS similarity criterion]

(iii) In $\triangle PML$ and $\triangle DEF$,

$$\therefore \frac{PM}{DE} = \frac{2}{4} = \frac{1}{2}, \frac{ML}{EF} = \frac{2.7}{5} = \frac{27}{50}, \frac{LP}{DF} = \frac{3}{6} = \frac{1}{2}$$

 $\Rightarrow \frac{PM}{DE} \neq \frac{ML}{EF} \neq \frac{LP}{DF} \Rightarrow \text{Triangles are not similar.}$

(iv) In ΔMNL and ΔQPR ,

$$\frac{ML}{QR} = \frac{5}{10} = \frac{1}{2}, \frac{MN}{QP} = \frac{2.5}{5} = \frac{1}{2}$$
 and
 $\angle NML = \angle PQR = 70^{\circ}$

 \therefore $\Delta MNL \sim \Delta QPR$

[By SAS similarity criterion]

(v) In $\triangle ABC$ and $\triangle FDE$,

 $\angle A = \angle F = 80^{\circ}$ $AB \quad FD \quad \text{are surface}$

Here, $\frac{AB}{AC}$ and $\frac{FD}{DE}$ are unknown.

 \therefore The triangles cannot be said similar.

(vi) In $\triangle DEF$ and $\triangle PQR$, $\angle D = \angle P = 70^{\circ}$

[:
$$\angle P = 180^{\circ} - (80^{\circ} + 30^{\circ}) = 180^{\circ} - 110^{\circ} = 70^{\circ}$$
]
 $\angle E = \angle Q = 80^{\circ}$

$$\angle F = \angle R = 30^{\circ}$$

 $\Delta DEF \sim \Delta POR$

[: $\angle F = 180^{\circ} - (80^{\circ} + 70^{\circ}) = 30^{\circ}$] [By AAA similarity criterion]

2. We have, $\angle BOC = 125^{\circ}$ and $\angle CDO = 70^{\circ}$

Since, $\angle DOC + \angle BOC = 180^{\circ}$ [Linear pair] $\Rightarrow \angle DOC = 180^{\circ} - 125^{\circ} = 55^{\circ}$...(i)

Using the angle sum property in $\triangle ODC$, we get

 $\angle DOC + \angle ODC + \angle DCO = 180^{\circ}$

 \Rightarrow 55° + 70° + $\angle DCO = 180°$

$$\Rightarrow$$
 $\angle DCO = 180^{\circ} - 55^{\circ} - 70^{\circ} = 55^{\circ}$

Also,
$$\angle OAB = \angle DCO = 55^{\circ}$$
 ...(ii)

[Corresponding angles of similar triangles]

Thus, from (i) and (ii)

$$\angle DOC = 55^{\circ}$$
, $\angle DCO = 55^{\circ}$ and $\angle OAB = 55^{\circ}$.

3. We have a trapezium

ABCD in which $AB \parallel DC$. The diagonals AC and BD intersect at O.

In $\triangle OAB$ and $\triangle OCD$,

 \therefore AB || DC and AC and BD are transversals.

 $\therefore \angle OBA = \angle ODC$ and $\angle OAB = \angle OCD$

[Alternate angles] [Alternate angles]

:. $\triangle OAB \sim \triangle OCD$ [By AA similarity criterion]

So, $\frac{OB}{OD} = \frac{OA}{OC}$ [Ratios of corresponding sides of the similar triangles]

4. In $\triangle PQR$, $\angle 1 = \angle 2$

[Given]

 $\therefore PR = QP$

...(i) [Sides opposite to equal angles are equal]

Also,
$$\frac{QR}{QS} = \frac{QT}{PR}$$
 [Given] ...(ii)

From (i) and (ii), we get

$$\frac{QR}{QS} = \frac{QT}{QP} \Rightarrow \frac{QS}{QR} = \frac{QP}{QT}$$
 [By taking reciprocals] ...(iii)

Now, in ΔPQS and ΔTQR ,

$$\frac{QS}{QR} = \frac{QP}{QT}$$
 [From (iii)]

and $\angle SQP = \angle RQT = \angle 1$

 $\Delta PQS \sim \Delta TQR$

[By SAS similarity criterion]

5. In ΔPQR ,

T is a point on QR and S is a point on PR such that $\angle RTS = \angle P$.

Now, in $\triangle RPQ$ and $\triangle RTS$, $\angle RPQ = \angle RTS$

 $\angle PRQ = \angle TRS$ $\Delta RPQ \sim \Delta RTS$ [Given]

[By AA similarity criterion]

6. We have, $\triangle ABE \cong \triangle ACD$

:. Their corresponding parts are equal,

i.e., AB = AC, $A\hat{E} = AD$

$$\Rightarrow \frac{AB}{AC} = 1$$
 and $\frac{AE}{AD} = 1$ $\therefore \frac{AB}{AC} = \frac{AE}{AD} \Rightarrow \frac{AB}{AE} = \frac{AC}{AD}$

$$\Rightarrow \frac{AB}{AD} = \frac{AC}{AF}$$

$$[::AE = AD]$$

Now in $\triangle ADE$ and $\triangle ABC$, $\frac{AB}{AD} = \frac{AC}{AE}$ [From (i)]

and $\angle DAE = \angle BAC$

[common]

 $\triangle ADE \sim \triangle ABC$ [By SAS similarity criterion]

7. We have a $\triangle ABC$ in which altitude AD and CE intersect each other at P.

$$\Rightarrow \angle D = \angle E = 90^{\circ} \qquad \dots (1)$$

(i) In $\triangle AEP$ and $\triangle CDP$,

 $\angle AEP = \angle CDP$ $\angle EPA = \angle DPC$ [From (1)] [Vertically opposite angles]

 \therefore $\triangle AEP \sim \triangle CDP$

[Vertically opposite angles]
[By AA similarity criterion]

(ii) In $\triangle ABD$ and $\triangle CBE$,

 $\angle ADB = \angle CEB$ Also, $\angle ABD = \angle CBE$ [From (1)] [Common]

[From (1)]

[Common]

 $\therefore \quad \Delta ABD \sim \Delta CBE$

CBE [By AA similarity criterion]

(iii) In $\triangle AEP$ and $\triangle ADB$,

 $\angle AEP = \angle ADB$

Also, $\angle EAP = \angle DAB$

 \therefore $\triangle AEP \sim \triangle ADB$

[By AA similarity criterion]

(iv) In $\triangle PDC$ and $\triangle BEC$, $\angle PDC = \angle BEC$

Also, $\angle DCP = \angle ECB$

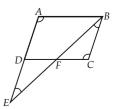
[From (1)] [Common]

 $\therefore \quad \Delta PDC \sim \Delta BEC$

[By AA similarity criterion]

8. We have a parallelogram *ABCD* in which *AD* is produced to *E* and *BE* is joined such that *BE* intersects *CD* at *F*.

Now, in $\triangle ABE$ and $\triangle CFB$, $\angle BAE = \angle FCB$ [Opposite angles of a parallelogram]



 $\angle AEB = \angle CBF$

[Alternate angles, as $AE \parallel BC$ and BE is a transversal.] $\triangle ABE \sim \triangle CFB$ [By AA similarity criterion]

 $\triangle ABE \sim \Delta CFB$ [By AA similarity criterion] 9. We have $\triangle ABC$, right angled at *B* and $\triangle AMP$, right

9. We have $\triangle ABC$, right angled at B and $\triangle AMP$, right angled at M.

$$\therefore \quad \angle B = \angle M = 90^{\circ} \qquad \dots (1)$$

(i) In $\triangle ABC$ and $\triangle AMP$, $\angle ABC = \angle AMP$

[From (1)]

and $\angle BAC = \angle MAP$

[Common]

 $\therefore \quad \Delta ABC \sim \Delta AMP$

[By AA similarity criterion]

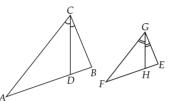
(ii) : $\triangle ABC \sim \triangle AMP$

[As proved above]

:. Their corresponding sides are proportional.

$$\Rightarrow \quad \frac{CA}{PA} = \frac{BC}{MP}$$

10. We have, two similar $\triangle ABC$ and $\triangle FEG$ such that CD and GH are the bisectors of $\angle ACB$ and $\angle FGE$ respectively.



(i) In $\triangle ACD$ and $\triangle FGH$, $\angle A = \angle F$

[: $\triangle ABC \sim \triangle FEG$] ...(1)

Since $\triangle ABC \sim \triangle FEG$

$$\therefore \quad \angle C = \angle G \Rightarrow \frac{1}{2} \angle C = \frac{1}{2} \angle G$$

$$\Rightarrow \angle ACD = \angle FGH \qquad ...(2)$$

From (1) and (2), we have

 $\Delta ACD \sim \Delta FGH$ [By AA similarity criterion]

:. Their corresponding sides are proportional.

$$\Rightarrow \quad \frac{CD}{GH} = \frac{AC}{FG}$$

(ii) In $\triangle DCB$ and $\triangle HGE$,

$$\angle B = \angle E$$

$$[:: \Delta ABC \sim \Delta FEG]$$
 ...(1)

Again, $\triangle ABC \sim \triangle FEG \Rightarrow \angle ACB = \angle FGE$

$$\therefore \quad \frac{1}{2} \angle ACB = \frac{1}{2} \angle FGE$$

$$\Rightarrow$$
 $\angle DCB = \angle HGE$...(2)

From (1) and (2), we have

 $\Delta DCB \sim \Delta HGE$ [By AA similarity criterion]

(iii) In ΔDCA and ΔHGF ,

$$\therefore$$
 $\triangle ABC \sim \triangle FEG \Rightarrow \angle CAB = \angle GFE$

$$\Rightarrow \angle CAD = \angle GFH \Rightarrow \angle DAC = \angle HFG$$
 ...(1)

Also, $\triangle ABC \sim \triangle FEG \Rightarrow \angle ACB = \angle FGE$

$$\therefore \quad \frac{1}{2} \angle ACB = \frac{1}{2} \angle FGE$$

$$\Rightarrow \angle DCA = \angle HGF$$
 ...(2)

From (1) and (2), we have

 $\Delta DCA \sim \Delta HGF$ [By AA similarity criterion]

11. We have an isosceles $\triangle ABC$ in which AB = AC. In $\triangle ABD$ and $\triangle ECF$,

$$\angle ACB = \angle ABC$$

$$\Rightarrow \angle ECF = \angle ABD$$
 ...(i)

Again, $AD \perp BC$ and $EF \perp AC$

$$\Rightarrow$$
 $\angle ADB = \angle EFC = 90^{\circ}$...(ii)

From (i) and (ii), we have

 $\triangle ABD \sim \triangle ECF$ [By AA similarity criterion]

12. We have $\triangle ABC$ and $\triangle PQR$ in which AD and PM are medians corresponding to sides BC and QR respectively

such that
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{(1/2)BC}{(1/2)QR} = \frac{AD}{PM} \Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

 $\therefore \Delta ABD \sim \Delta PQM$ [By SSS similarity criterion]

:. Their corresponding angles are equal.

 $\Rightarrow \angle ABD = \angle PQM \Rightarrow \angle ABC = \angle PQR$

Now, in
$$\triangle ABC$$
 and $\triangle PQR$, $\frac{AB}{PO} = \frac{BC}{OR}$ [Given]

Also, $\angle ABC = \angle PQR$

 \therefore $\triangle ABC \sim \triangle PQR$ [By SAS similarity criterion]

13. We have a $\triangle ABC$ and a point *D* on its side *BC* such that $\angle ADC = \angle BAC$.

In $\triangle BAC$ and $\triangle ADC$,

$$\angle BAC = \angle ADC$$
 [Given]

and $\angle BCA = \angle ACD$ [Common]

 $\therefore \quad \Delta BAC \sim \Delta ADC \qquad [By AA similarity criterion]$

.. Their corresponding sides are proportional.

$$\Rightarrow \frac{CA}{CD} = \frac{CB}{CA} \Rightarrow CA \times CA = CB \times CD$$

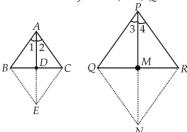
$$\Rightarrow CA^2 = CB \times CD$$

14. Given: $\triangle ABC$ and $\triangle PQR$ in which AD and PM are medians.

Also,
$$\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$$
 ...(i)

To prove : $\triangle ABC \sim \triangle PQR$

Construction : Produce AD to E and PM to N such that AD = DE and PM = MN. Join BE, CE, QN and RN.



Proof: Quadrilaterals *ABEC* and *PQNR* are parallelograms, since their diagonals bisect each other at point *D* and *M* respectively.

$$\Rightarrow$$
 BE = AC and QN = PR

$$\Rightarrow \frac{BE}{QN} = \frac{AC}{PR} \Rightarrow \frac{BE}{QN} = \frac{AB}{PQ}$$
 [From (i)]

i.e.,
$$\frac{AB}{PQ} = \frac{BE}{QN}$$
 ...(ii)

From (i),
$$\frac{AB}{PQ} = \frac{AD}{PM} = \frac{2AD}{2PM} = \frac{AE}{PN}$$

$$\Rightarrow \quad \frac{AB}{PQ} = \frac{AE}{PN} \qquad ...(iii)$$

Triangles 5

From (ii) and (iii), we have

$$\frac{AB}{PQ} = \frac{BE}{QN} = \frac{AE}{PN}$$

⇒ $\triangle ABE \sim \triangle PQN$ [By SSS similarity criterion] ⇒ $\angle 1 = \angle 3$...(iv)

Similarly, we can prove

$$\triangle ACE \sim \triangle PRN \Rightarrow \angle 2 = \angle 4$$
 ...(v)

From (iv) and (v), $\angle 1 + \angle 2 = \angle 3 + \angle 4$

$$\Rightarrow \angle A = \angle P$$
 ...(vi)

Now, in $\triangle ABC$ and $\triangle PQR$, we have

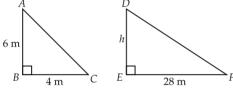
$$\frac{AB}{PQ} = \frac{AC}{PR}$$
 [From (i)]

and $\angle A = \angle P$ [From (vi)]

 $\therefore \Delta ABC \sim \Delta PQR$ [By SAS similarity criterion]

15. Let AB = 6 m be the pole and BC = 4 m be its shadow (in right $\triangle ABC$), whereas DE and EF denote the tower and its shadow respectively.

EF = Length of the shadow of the tower = 28 m



In $\triangle ABC$ and $\triangle DEF$, we have $\angle B = \angle E = 90^{\circ}$

$$\angle A = \angle D$$

[: Angular elevation of the sun at the same time is equal]

 $\therefore \quad \Delta ABC \sim \Delta DEF$

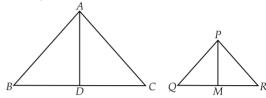
[By AA similarity criterion]

 $\therefore \text{ Their sides are proportional } i.e., \frac{AB}{DE} = \frac{BC}{EF}$

$$\Rightarrow \frac{6}{h} = \frac{4}{28} \Rightarrow h = \frac{6 \times 28}{4} = 42 \text{ m}$$

Thus, the required height of the tower is 42 m.

16. We have $\triangle ABC \sim \triangle PQR$ such that AD and PM are the medians corresponding to the sides BC and QR respectively.



- \therefore $\triangle ABC \sim \triangle PQR$
- ⇒ The corresponding sides of similar triangles are proportional.

$$\therefore \quad \frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} \qquad \dots (i)$$

: Corresponding angles are also equal in two similar triangles.

$$\therefore \angle A = \angle P, \angle B = \angle Q \text{ and } \angle C = \angle R \qquad \dots(ii)$$

Since, AD and PM are medians.

$$\therefore BC = 2BD \text{ and } QR = 2QM$$

$$\therefore \quad \text{From (i), } \frac{AB}{PQ} = \frac{2BD}{2QM} = \frac{BD}{QM} \qquad \dots \text{(iii)}$$

And
$$\angle B = \angle Q \Rightarrow \angle ABD = \angle PQM$$
 ...(iv)

From (iii) and (iv), we have

 $\triangle ABD \sim \triangle PQM$ [By SAS similarity criterion]

: Their corresponding sides are proportional.

$$\Rightarrow \quad \frac{AB}{PQ} = \frac{AD}{PM}.$$

MtG BEST SELLING BOOKS FOR CLASS 10

