Circles

📥 TRY YOURSELF

SOLUTIONS

1. Since, tangent at any point of a circle is perpendicular to the radius through the point of contact. $\therefore OA \perp PQ \implies \angle OAQ = 90^{\circ}$ $\therefore In \Delta OAQ, x + 30^{\circ} + 90^{\circ} = 180^{\circ}$ [By angle sum property] $\Rightarrow x = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$ Also, $\tan 30^{\circ} = \frac{OA}{AQ} \Rightarrow \frac{1}{\sqrt{3}} = \frac{6}{AQ}$ [\therefore Radius, OA = 6 cm] $\Rightarrow AQ = 6\sqrt{3}$ cm 2. Since, tangent at any point of a circle is perpendicular

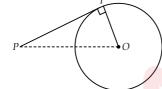
2. Since, tangent at any point of a circle is perpendicular to the radius through the point of contact. $\therefore OD \perp AB \Rightarrow \angle ODB = 90^{\circ}$

 $\therefore \quad OD \perp AB \Rightarrow$ Also, $PQ \parallel AB$

 $\therefore \quad x = \angle ODB \qquad [Corresponding angles]$

$$\Rightarrow x = 90^{\circ}$$

- 3. Let *PT* be the tangent and *O* be the centre of circle.
- $\therefore OP = 29 \text{ cm}, OT = 20 \text{ cm}$



Now, $OT \perp PT$ [: Tangent at any point of a circle is perpendicular to the radius through the point of contact] \therefore In ΔPTO ,

 $PT^2 = OP^2 - OT^2$ [By Pythagoras theorem] = $29^2 - 20^2 = 841 - 400 = 441$

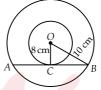
 $\Rightarrow PT = 21 \text{ cm}$

4. Since, length of tangents drawn from an external point to a circle are equal.

 $\therefore PA = PB \qquad [Tangents from P] \qquad ...(i) \\ CA = CQ \qquad [Tangents from C] \qquad ...(ii) \\ DB = DQ \qquad [Tangents from D] \qquad ...(iii) \\ Now, PC = PA - CA = PB - CQ \qquad [Using (i) and (ii)] \\ = 10 - 2 = 8 \text{ cm}$

5. Since, length of tangents drawn from an external point to a circle are equal.

 $\therefore PA = PB \qquad [Tangents from P] \qquad ...(i)$ $CA = CE \qquad [Tangents from C] \qquad ...(ii)$ $DE = DB \qquad [Tangents from D] \qquad ...(ii)$ $Now, perimeter of <math>\Delta PCD = PC + CD + PD = (PA - CA) + (CE + DE) + (PB - BD) = PA + PB - CA + CE + DE - DB = 14 + 14 - CA + CA + DE - DE \qquad [Using (i), (ii) and (iii)] = 28 cm$ **6.** Let *AB* is the required chord which touches the smaller circle.



Since, *AB* is the tangent to smaller circle.

 $\therefore OC \perp AB \qquad [\because Tangent at any point of a circle is perpendicular to the radius through the point of contact]$ $<math display="block">\Rightarrow \Delta OCB \text{ is the right angle triangle}$

In $\triangle OCB$,

 \Rightarrow

$$OB^2 = OC^2 + BC^2$$
 [By Pythagoras theorem]

$$10^2 = 8^2 + BC^2 \implies BC^2 = 100 - 64 = 36$$

$$\Rightarrow BC = 6 \text{ cm}$$

Also, OC bisects the chord AB

- $\therefore AB = 2BC = 12 \text{ cm}$
- 7. Join *OP* and *OS*.

Since, length of tangents drawn from an external point to a circle are equal.

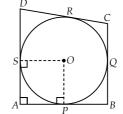
$\therefore AP = AS$	[Tangents from A]	(i)
CQ = CR	[Tangents from C]	(ii)
DR = DS	[Tangents from D]	(iii)

Now,
$$CQ = CR \Rightarrow CR = 18 \text{ cm}$$

[: CQ = 18 cm (given)]

$$DR = DC - CR = 35 - 18 = 17 \text{ cm}$$

[∵ *CD* = 35 cm (given)]



[Using (iii)]

AS = AD - DS = 40 - 17 = 23 cm $\therefore AP = 23 \text{ cm}$ [Using (i)]

 $\therefore AP = 23 \text{ cm}$ Now, $OP \perp AP$ and $OS \perp AS$

 $\therefore DS = 17 \text{ cm}$

[:. Tangent at any point of circle is perpendicular to the radius through the point of contact] Also, $\angle DAB = 90^{\circ}$ [Given] Since, all angles are of 90° and adjacent sides are equal in

APOS, so APOS is a square. $\therefore OP = OS = AS = AP = 23 \text{ cm}$

Thus, radius of the circle is 23 cm.

MtG BEST SELLING BOOKS FOR CLASS 10

X

10

10

10

10

Visit www.mtg.in for complete information