Real Numbers

SOLUTIONS

EXERCISE - 1.2

1. (i) Using factor tree method, we have

NCERT FOCUS

- $\therefore \quad 140 = 2 \times 2 \times 5 \times 7 = 2^2 \times 5 \times 7$
- (ii) Using factor tree method, we have

- $\therefore \quad 156 = 2 \times 2 \times 3 \times 13 = 2^2 \times 3 \times 13$
- (iii) Using factor tree method, we have

- $\therefore \quad 3825 = 3 \times 3 \times 5 \times 5 \times 17 = 3^2 \times 5^2 \times 17$
- (iv) Using factor tree method, we have

 $\therefore \quad 5005 = 5 \times 7 \times 11 \times 13$

(v) Using factor tree method, we have

- $\therefore \quad 7429 = 17 \times 19 \times 23$
- 2. (i) The prime factorisation of 26 and 91 is, $26 = 2 \times 13$ and $91 = 7 \times 13$
- :. LCM $(26, 91) = 2 \times 7 \times 13 = 182$ HCF (26, 91) = 13

Now, LCM × HCF = 182 × 13 = 2366 and 26 × 91 = 2366

- *i.e.*, LCM × HCF = Product of two numbers.
- (ii) The prime factorisation of 510 and 92 is, 510 = 2 × 3 × 5 × 17 and 92 = 2 × 2 × 23
 ∴ LCM (510, 92) = 2 × 2 × 3 × 5 × 17 × 23 =
- :. LCM $(510, 92) = 2 \times 2 \times 3 \times 5 \times 17 \times 23 = 23460$ HCF (510, 92) = 2
- Now, LCM \times HCF = 23460 \times 2 = 46920
- and $510 \times 92 = 46920$
- *i.e.*, LCM × HCF = Product of two numbers.
- (iii) The prime factorisation of 336 and 54 is,
- 336 = 2 × 2 × 2 × 2 × 3 × 7 and 54 = 2 × 3 × 3 × 3 ∴ LCM (336, 54) = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 × 7 = 3024
- and HCF(336, 54) = $2 \times 3 = 6$
- Now, LCM \times HCF = 3024 \times 6 = 18144
- Also, 336 × 54 = 18144

Thus, LCM × HCF = Product of two numbers.

- **3.** (i) The prime factorisation of 12, 15 and 21 is, 12 = 2 × 2 × 3, 15 = 3 × 5 and 21 = 3 × 7
- $\therefore \quad \text{HCF (12, 15, 21)} = 3 \\ \text{LCM (12, 15, 21)} = 2 \times 2 \times 3 \times 5 \times 7 = 420$
- (ii) We have, $17 = 1 \times 17$, $23 = 1 \times 23$, $29 = 1 \times 29$ \Rightarrow HCF (17, 23, 29) = 1
- $= \sum_{i=1}^{n} \text{ICP}(17, 23, 29) = 1 \\ \text{LCM}(17, 23, 29) = 17 \times 23 \times 29 = 11339$
- (iii) The prime factorisation of 8, 9 and 25 is, 8 = $2 \times 2 \times 2$, 9 = 3×3 and $25 = 5 \times 5$
- $\therefore \quad \text{HCF } (8, 9, 25) = 1 \\ \text{LCM } (8, 9, 25) = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 = 1800$
- **4.** Since, LCM × HCF = Product of the numbers
- $\therefore \quad \text{LCM} \times 9 = 306 \times 657$

$$\Rightarrow$$
 LCM = $\frac{306 \times 657}{9}$ = 22338

Thus, LCM of 306 and 657 is 22338.

- **5.** Here, *n* is a natural number and let 6^n ends with digit 0.
- \therefore 6^{*n*} is divisible by 5.

CHAPTER 1

MtG 100 PERCENT Mathematics Class-10

But the prime factors of 6 are 2 and 3. *i.e.*, $6 = 2 \times 3$ $\Rightarrow 6^n = (2 \times 3)^n$

i.e., In the prime factorisation of 6^n , there is no factor 5. So, by the fundamental theorem of Arithmetic, every composite number can be expressed as a product of primes and this factorisation is unique apart from the order in which the prime factorisation occurs.

 \therefore Our assumption that 6^n ends with digit 0, is wrong. Thus, there does not exist any natural number *n* for which 6^n ends with zero.

6. We have

 $7 \times 11 \times 13 + 13 = 13((7 \times 11) + 1) = 13(78)$, which cannot be a prime number because it has factors 13 and 78.

Also, $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$

 $= 5[7 \times 6 \times 4 \times 3 \times 2 \times 1 + 1],$

which is also not a prime number because it has a factor 5

Thus, 7 × 11 × 13 + 13 and

 $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$ are composite numbers.

7. Time taken by Sonia to drive one round of the field= 18 minutes

Time taken by Ravi to drive one round of the field

= 12 minutes LCM of 18 and 12 gives the exact number of minutes after which they meet again at the starting point. Now, $18 = 2 \times 3 \times 3$ and $12 = 2 \times 2 \times 3$

 \therefore LCM of 18 and 12 = 2 × 2 × 3 × 3 = 36

Thus, they will meet again at the starting point after 36 minutes.

EXERCISE - 1.3

1. Let $\sqrt{5}$ be a rational number.

So, we can find integers *a* and *b* ($b \neq 0$ and *a*, *b* are co-

prime) such that $\sqrt{5} = \frac{a}{b}$ $\Rightarrow \sqrt{5} \cdot b = a$...(i)

Squaring both sides, we get $5b^2 = a^2$ $\Rightarrow 5 \text{ divides } a^2 \Rightarrow 5 \text{ divides } a \qquad \dots(ii)$

⇒ 5 divides a^2 ⇒ 5 divides a ...(ii) So, we can write a = 5m, where *m* is an integer.

 \therefore Putting *a* = 5*m* in (i), we get

$$\sqrt{5b} = 5m$$

$$\Rightarrow 5b^2 = 25m^2$$
 [Squaring both sides]

$$\Rightarrow b^2 = 5m^2$$

 \Rightarrow 5 divides $b^2 \Rightarrow$ 5 divides b ...(iii)

From (ii) and (iii), we have, a and b have 5 as a common factor which contradicts the fact that a and b are co-prime.

 \therefore Our supposition that $\sqrt{5}$ is rational, is wrong. Hence, $\sqrt{5}$ is irrational.

- **2.** Let $3 + 2\sqrt{5}$ be a rational number.
- ... We can find two co-prime integers *a* and *b* such that $3 + 2\sqrt{5} = \frac{a}{b}$, where $b \neq 0$

$$\therefore \quad \frac{a}{b} - 3 = 2\sqrt{5} \Rightarrow \frac{a - 3b}{b} = 2\sqrt{5} \Rightarrow \frac{a - 3b}{2b} = \sqrt{5} \qquad \dots (i)$$

 \therefore *a* and *b* are integers,

$$\therefore \quad \frac{a-3b}{2b}$$
 is rational

So, $\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational.

 \therefore Our supposition is wrong.

Hence, $3 + 2\sqrt{5}$ is irrational.

3. (i) We have
$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} = \frac{1}{2} \cdot \sqrt{2}$$

Let
$$\frac{1}{\sqrt{2}}$$
 be rational,

$$\frac{1}{2}(\sqrt{2})$$
 is rational

Let $\frac{1}{2}(\sqrt{2}) = \frac{a}{b}$, such that *a* and *b* are co-prime integers and $b \neq 0$.

$$\therefore \quad \sqrt{2} = \frac{2a}{b} \qquad \qquad \dots (i)$$

Since, the division of two integers is rational.

$$\therefore \quad \frac{2a}{b}$$
 is rational

From (i), $\sqrt{2}$ is rational number, which contradicts the fact that $\sqrt{2}$ is irrational.

 \therefore Our assumption is wrong.

Thus,
$$\frac{1}{\sqrt{2}}$$
 is irrational.

- (ii) Let $7\sqrt{5}$ is rational.
- \therefore We can find two co-prime integers *a* and *b* such that

$$7\sqrt{5} = \frac{a}{b}$$
, where $b \neq 0$

Now, $7\sqrt{5} = \frac{a}{b} \Rightarrow \sqrt{5} = \frac{a}{7b}$, which is a rational number. [:: *a* and *b* are integers.]

 $\Rightarrow \sqrt{5}$ is a rational number.

This contradicts the fact that $\sqrt{5}$ is an irrational number.

 \therefore Our assumption is wrong.

Thus, we conclude that $7\sqrt{5}$ is irrational.

(iii) Let $6 + \sqrt{2}$ is rational.

$$\therefore$$
 We can find two co-prime integers *a* and *b* such that

$$6 + \sqrt{2} = \frac{a}{b}$$
, where $b \neq 0$
 $\therefore \quad \frac{a}{b} - 6 = \sqrt{2} \implies \sqrt{2} = \frac{a - 6b}{b}$, which is rational

 $\Rightarrow \sqrt{2}$ is rational which contradicts the fact that $\sqrt{2}$ is an irrational number.

- \therefore Our supposition is wrong.
- Hence, $6 + \sqrt{2}$ is an irrational number.

MtG BEST SELLING BOOKS FOR CLASS 10

X

10

10

10

10

Visit www.mtg.in for complete information