Polynomials

SOLUTIONS

NCERT FOCUS

1. (i) The given graph is parallel to *x*-axis, it does not intersect the *x*-axis.

- \therefore It has no zero.
- (ii) The given graph intersects the *x*-axis at one point only.
- \therefore It has one zero.
- (iii) The given graph intersects the *x*-axis at three points.
- \therefore It has three zeroes.
- (iv) The given graph intersects the *x*-axis at two points.
- \therefore It has two zeroes.
- (v) The given graph intersects the *x*-axis at four points.
- \therefore It has four zeroes.
- (vi) The given graph meets the *x*-axis at three points.
- \therefore It has three zeroes.

EXERCISE - 2.2

1. (i) We have,
$$p(x) = x^2 - 2x - 8$$

= $x^2 + 2x - 4x - 8 = x(x + 2) - 4(x + 2) = (x - 4)(x + 2)$
For $p(x) = 0$, we must have $(x - 4)(x + 2) = 0$
Either $x - 4 = 0 \Rightarrow x = 4$ or $x + 2 = 0 \Rightarrow x = -2$
∴ The zeroes of $x^2 - 2x - 8$ are 4 and -2
-(-2)

Now, sum of the zeroes =
$$4 + (-2) = 2 = \frac{1}{1}$$

 $=\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of zeroes = $4 \times (-2) = \frac{-8}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Thus, the relationship between the zeroes and the coefficients in the polynomial $x^2 - 2x - 8$ is verified. (ii) We have, $p(s) = 4s^2 - 4s + 1$ $= 4s^2 - 2s - 2s + 1 = 2s(2s - 1) - 1(2s - 1)$

1

= 4s - 2s - 2s + 1 - 2s(2s - 1) - 1(2s - 1)= (2s - 1)(2s - 1)

For
$$p(s) = 0$$
, we have, $(2s - 1) = 0 \implies s = \frac{1}{2}$

 \therefore The zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$

Sum of the zeroes $=\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(\text{Coefficient of } s)}{\text{Coefficient of } s^2}$ and product of zeroes $=\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$

Thus, the relationship between the zeroes and coefficients in the polynomial $4s^2 - 4s + 1$ is verified. (iii) We have, $p(x) = 6x^2 - 3 - 7x$ $= 6x^{2} - 7x - 3 = 6x^{2} - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3)$ = (3x + 1)(2x - 3)For p(x) = 0, we have, Either $(3x + 1) = 0 \Rightarrow x = -\frac{1}{3}$ or $(2x - 3) = 0 \Rightarrow x = \frac{3}{2}$ Thus, the zeroes of $6x^{2} - 3 - 7x$ are $-\frac{1}{3}$ and $\frac{3}{2}$. Now, sum of the zeroes $= -\frac{1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6}$ $= \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^{2}}$ and product of zeroes $= (-\frac{1}{3}) \times \frac{3}{2} = \frac{-3}{6}$ $= \frac{-(\text{Constant term})}{\text{Coefficient of } x^{2}}$

Thus, the relationship between the zeroes and coefficients in the polynomial $6x^2 - 3 - 7x$ is verified. (iv) We have, $p(u) = 4u^2 + 8u = 4u(u + 2)$ For p(u) = 0, we have Either $4u = 0 \Rightarrow u = 0$ $u + 2 = 0 \Longrightarrow u = -2$ or The zeroes of $4u^2 + 8u$ are 0 and – 2. *:*. Now, $4u^2 + 8u$ can be written as $4u^2 + 8u + 0$. Sum of the zeroes = $0 + (-2) = -2 = \frac{-(8)}{4}$ $=\frac{-(\text{Coefficient of } u)}{(1-u)}$ $= \frac{1}{Coefficient of u^2}$ and the product of zeroes = $0 \times (-2) = 0 = \frac{0}{4}$ Constant term Coefficient of u^2 Thus, the relationship between the zeroes and the coefficients in the polynomial $4u^2 + 8u$ is verified. (v) We have, $p(t) = t^2 - 15 = (t^2) - (\sqrt{15})^2$ $[:: a^2 - b^2 = (a + b) (a - b)]$ $=(t+\sqrt{15})(t-\sqrt{15})$ For p(t) = 0, we have Either $(t + \sqrt{15}) = 0 \Rightarrow t = -\sqrt{15}$ or $t - \sqrt{15} = 0 \implies t = \sqrt{15}$ The zeroes of t^2 – 15 are – $\sqrt{15}$ and $\sqrt{15}$ ÷ Now, we can write $t^2 - 15$ as $t^2 + 0t - 15$. Sum of the zeroes = $-\sqrt{15} + \sqrt{15} = 0 = \frac{-(0)}{1}$ -(Coefficient of t) ÷

$$=\frac{-(\text{Coefficient of }t)}{\text{Coefficient of }t^2}$$

MtG 100 PERCENT Mathematics Class-10

Product of zeroes =
$$(-\sqrt{15}) \times (\sqrt{15}) = \frac{-(15)}{1}$$

= $\frac{\text{Constant term}}{\text{Coefficient of } t^2}$

Thus, the relationship between zeroes and the coefficients in the polynomial t^2 – 15 is verified. (vi) We have, $p(x) = 3x^2 - x - 4$

 $= 3x^{2} + 3x - 4x - 4 = 3x(x + 1) - 4(x + 1) = (x + 1)(3x - 4)$ For p(x) = 0, we have Either $(x + 1) = 0 \Rightarrow x = -1$

- $3x 4 = 0 \Rightarrow x = 4/3$ or
- The zeroes of $3x^2 x 4$ are -1 and 4/3÷.

Now, sum of the zeroes =
$$(-1) + \frac{4}{3} = \frac{1}{3} = \frac{-(-1)}{3}$$

= $\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$
and product of zeroes = $(-1) \times \frac{4}{3} = \frac{(-4)}{3}$

 $=\frac{\text{Constant term}}{\text{Coefficient of }x^2}$ Thus, the relationship between the zeroes and coefficients in the polynomial $3x^2 - x - 4$ is verified.

2. (i) Since, sum of the zeroes,
$$(\alpha + \beta) = \frac{1}{4}$$

Product of the zeroes, $\alpha\beta = -1$

The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

$$= x^{2} - \left(\frac{1}{4}\right)x + (-1) = x^{2} - \frac{1}{4}x - 1 = \frac{1}{4}(4x^{2} - x - 4)$$

Since, $\frac{1}{4}(4x^2-x-4)$ and $(4x^2-x-4)$ have same

zeroes, therefore $(4x^2 - x - 4)$ is the required quadratic polynomial.

(ii) Since, sum of the zeroes, $(\alpha + \beta) = \sqrt{2}$

Product of zeroes, $\alpha\beta = \frac{1}{2}$

... The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

$$= x^{2} - (\sqrt{2})x + \left(\frac{1}{3}\right) = \frac{1}{3}(3x^{2} - 3\sqrt{2}x + 1)$$

Since, $\frac{1}{3}(3x^{2} - 3\sqrt{2}x + 1)$ and $(3x^{2} - 3\sqrt{2}x + 1)$
same zeroes, therefore

 $(3x^2 - 3\sqrt{2}x + 1)$ is the required quadratic polynomial. (iii) Since, sum of zeroes, $(\alpha + \beta) = 0$ Product of zeroes, $\alpha\beta = \sqrt{5}$

:. The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$ $=x^{2}-(0)x+\sqrt{5}=x^{2}+\sqrt{5}$ (iv) Since, sum of zeroes, $(\alpha + \beta) = 1$

Product of zeroes, $\alpha\beta = 1$

... The required quadratic polynomial is $x^{2} - (\alpha + \beta)x + \alpha\beta = x^{2} - (1)x + 1 = x^{2} - x + 1$ (v) Since, sum of the zeroes, $(\alpha + \beta) = -\frac{1}{4}$

Product of zeroes, $\alpha\beta = 1/4$... The required quadratic polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$

$$= x^{2} - \left(-\frac{1}{4}\right)x + \frac{1}{4} = x^{2} + \frac{x}{4} + \frac{1}{4} = \frac{1}{4}(4x^{2} + x + 1)$$

Since, $\frac{1}{4}(4x^2 + x + 1)$ and $(4x^2 + x + 1)$ have same zeroes, therefore, the required quadratic polynomial is $(4x^2 + x + 1)$.

(vi) Since, sum of zeroes, $(\alpha + \beta) = 4$ and product of zeroes, $\alpha\beta = 1$

... The required quadratic polynomial is $x^{2} - (\alpha + \beta)x + \alpha\beta = x^{2} - 4x + 1.$

1. (i) ::
$$p(x) = 2x^3 + x^2 - 5x + 2$$

:: $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$
 $= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + \frac{2}{1} = \frac{1+1-10+8}{4} = 0$
 $\Rightarrow \frac{1}{2}$ is a zero of $p(x)$.
Again, $p(1) = 2(1)^3 + (1)^2 - 5(1) + 2 = 2 + 1 - 5 + 2 = 0$
 $\Rightarrow 1$ is a zero of $p(x)$.
Also, $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$
 $= -16 + 4 + 10 + 2 = -16 + 16 = 0$
 $\Rightarrow -2$ is a zero of $p(x)$.
Now, $p(x) = 2x^3 + x^2 - 5x + 2$
:: Comparing it with $ax^3 + bx^2 + cx + d$, we have $a = 2$,
 $b = 1, c = -5$ and $d = 2$
Also, $\frac{1}{2}$, 1 and -2 are the zeroes of $p(x)$.
Let $\alpha = \frac{1}{2}, \beta = 1$ and $\gamma = -2$
:: $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$
Again, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{1}{2}(1) + 1(-2) + (-2)\left(\frac{1}{2}\right)$
 $= \frac{1}{2} - 2 - 1 = \frac{-5}{2} = \frac{c}{a}$
and product of zeroes = $\alpha\beta\gamma$
 $= \frac{1}{2} \times 1 \times (-2) = -\frac{2}{2} = -\frac{d}{a}$
Thus, the relationship between the coefficients and the zeroes of $p(x)$ is verified

(ii) Here,
$$p(x) = x^3 - 4x^2 + 5x - 2$$

 $\therefore \quad p(2) = (2)^3 - 4(2)^2 + 5(2) - 2$

have

$$= 8 - 16 + 10 - 2 = 18 - 18 = 0$$

Polynomials

⇒ 2 is a zero of p(x). Again, $p(1) = (1)^3 - 4(1)^2 + 5(1) - 2$ = 1 - 4 + 5 - 2 = 6 - 6 = 0⇒ 1 is a zero of p(x). Now, comparing $p(x) = x^3 - 4x^2 + 5x - 2$ with $ax^3 + bx^2$ + cx + d = 0, we have a = 1, b = -4, c = 5 and d = -2Also, 2, 1 and 1 are the zeroes of p(x). Let $\alpha = 2, \beta = 1, \gamma = 1$ Now, sum of zeroes $= \alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -b/a$ Again, $\alpha\beta + \beta\gamma + \gamma\alpha = 2(1) + 1(1) + 1(2)$ $= 2 + 1 + 2 = 5 = \frac{c}{a}$ and product of zeroes $= \alpha\beta\gamma = (2)(1)(1) = 2 = -d/a$

and product of zeroes = $\alpha\beta\gamma = (2)(1)(1) = 2 = -d/a$ Thus, the relationship between the zeroes and the coefficients of p(x) is verified.

2. Let the required cubic polynomial be $ax^3 + bx^2 + cx + d = 0$ and its zeroes be α , β and γ .

$$\therefore \quad \alpha + \beta + \gamma = 2 = \frac{-(\text{Coefficient of } x^2)}{\text{Coefficient of } x^3} = \frac{-b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = -7 = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3} = \frac{c}{a}$$
$$\alpha\beta\gamma = -14 = \frac{-(\text{Constant term})}{\text{Coefficient of } x^3} = \frac{-d}{a}$$

If
$$a = 1$$
, then $\frac{-b}{a} = \frac{-b}{1} = 2 \Rightarrow b = -2$,
 $\frac{c}{a} = \frac{c}{1} = -7 \Rightarrow c = -7$
and $\frac{-d}{a} = -\frac{d}{1} = -14 \Rightarrow d = 14$
 \therefore The required cubic polynomial is
 $1x^3 + (-2)x^2 + (-7)x + 14 = 0$
 $= x^3 - 2x^2 - 7x + 14 = 0$
3. We have, $p(x) = x^3 - 3x^2 + x + 1$.
Comparing it with $Ax^3 + Bx^2 + Cx + D$,
We have $A = 1$, $B = -3$, $C = 1$ and $D = 1$
 \therefore It is given that $(a - b)$, a and $(a + b)$ are the zeroes of
the polynomial.
 \therefore Let $\alpha = (a - b)$, $\beta = a$ and $\gamma = (a + b)$
 $\therefore \alpha + \beta + \gamma = -\frac{B}{A} = -\frac{(-3)}{1} = 3$
 $\Rightarrow (a - b) + a + (a + b) = 3 \Rightarrow 3a = 3 \Rightarrow a = 1$
Again, $\alpha\beta\gamma = \frac{-D}{A} = -1$
 $\Rightarrow (a - b) \times a \times (a + b) = -1$
 $\Rightarrow (a - b) \times 1 \times (1 + b) = -1 \Rightarrow 1 - b^2 = -1$
 $\Rightarrow b^2 = 1 + 1 = 2 \Rightarrow b = \pm\sqrt{2}$
Thus, $a = 1$ and $b = \pm\sqrt{2}$

MtG BEST SELLING BOOKS FOR CLASS 10

X

10

10

10

10

Visit www.mtg.in for complete information