Quadratic Equations

📥 TRY YOURSELF

SOLUTIONS

1. We have, $(x - 3)^2 + 2 = 5x - 9$ $\Rightarrow x^{2} + 9 - 6x + 2 = 5x - 9 \Rightarrow x^{2} - 11x + 20 = 0$ It is of the form $ax^2 + bx + c = 0, a \neq 0$. So, the given equation is a quadratic equation. We have, $x(7x - 12) = 7(x^2 - 7x + 9)$ 2. $\Rightarrow 7x^2 - 12x = 7x^2 - 49x + 63 \Rightarrow 37x - 63 = 0$ It is not of the form $ax^2 + bx + c = 0$, $a \neq 0$. So, the given equation is not a quadratic equation. We have, $x(6x + 5) = 8x^2 + 6x$ $\Rightarrow 6x^2 + 5x = 8x^2 + 6x \Rightarrow 2x^2 + x = 0$ It is of the form $ax^2 + bx + c = 0$, $a \neq 0$. So, the given equation is a quadratic equation. We have, $2x - \frac{3}{x} - 15 = 5\left(2x - \frac{3}{x}\right), x \neq 0$ **4**. $\Rightarrow 2x - \frac{3}{x} - 15 = 10x - \frac{15}{x}$ $\Rightarrow 2x^2 - 3 - 15x = 10x^2 - 15$ $[:: x \neq 0]$ $\Rightarrow 8x^2 + 15x - 12 = 0$ It is of the form $ax^2 + bx + c = 0$, $a \neq 0$. So, the given equation is a quadratic equation. 5. Let two consecutive odd integers be 2x + 1 and 2x + 3. According to question, (2x + 1)(2x + 3) = 783 \Rightarrow 4x² + 6x + 2x + 3 = 783 $\Rightarrow 4x^2 + 8x - 780 = 0 \Rightarrow x^2 + 2x - 195 = 0$ This is the required quadratic equation. Let the present age of Raju be *x* years. 6. His father's present age = (x + 30) years *.*.. After 5 years, Raju's age = (x + 5) years After 5 years, father's age = (x + 30 + 5) = (x + 35) years According to question, (x + 5)(x + 35) = 450 $\Rightarrow x^2 + 35x + 5x + 175 = 450 \Rightarrow x^2 + 40x - 275 = 0$ This is the required quadratic equation. 7. Given equation is in the form p(x) = 0, where $p(x) = 5x^2 - 126x + 25$...(i) On putting x = 25 in (i), we get $p(25) = 5(25)^2 - 126(25) + 25 = 3125 - 3150 + 25 = 0$ On putting $x = \frac{1}{10}$ in (i), we get

 $p\left(\frac{1}{10}\right) = 5\left(\frac{1}{10}\right)^2 - 126\left(\frac{1}{10}\right) + 25$ $= \frac{5 - 1260 + 2500}{100} = \frac{1245}{100} \neq 0.$ Hence, x = 25 is a solution but $x = \frac{1}{10}$ is not a solution of the given quadratic equation.

8. Given equation is in the form p(x) = 0, where $p(x) = x^2 + 8x + 4$ (i) On putting x = -2 in (i), we get $p(-2) = (-2)^2 + 8(-2) + 4 = 4 - 16 + 4 = -8 \neq 0$ On putting x = -4 in (i), we get $p(-4) = (-4)^2 + 8(-4) + 4 = 16 - 32 + 4 = -12 \neq 0$ So, x = -2 and -4 both are not the solutions of the given equation.

9. Given equation is in the form p(x) = 0,

where
$$p(x) = x^2 - 4\sqrt{2}x + 2\sqrt{2}$$
 ...(i)

On putting $x = \sqrt{2}$ in (i), we get

$$p(\sqrt{2}) = (\sqrt{2})^2 - 4\sqrt{2}(\sqrt{2}) + 2\sqrt{2}$$
$$= 2 - 8 + 2\sqrt{2} = 2\sqrt{2} - 6 \neq 0$$

On putting $x = \sqrt{2} + 1$ in (i), we get

$$p(\sqrt{2} + 1) = (\sqrt{2} + 1)^2 - 4\sqrt{2}(\sqrt{2} + 1) + 2\sqrt{2}$$
$$= 2 + 1 + 2\sqrt{2} - 8 - 4\sqrt{2} + 2\sqrt{2} = -5 \neq 0$$

So, $x = \sqrt{2}$ and $\sqrt{2} + 1$ both are not the solutions of the given equation.

10. Given,
$$x^2 + kx - 192 = 0$$

Since, x = 12 is a root of the given equation, so it will satisfy the given equation.

$$\therefore \quad (12)^2 + k(12) - 192 = 0 \implies 144 + 12k - 192 = 0$$

$$\Rightarrow 12k - 48 = 0 \Rightarrow k = \frac{48}{12} = 4$$
11. Given, $5x^2 - 8x + k = 0$

Since, x = -2/5 is a root of the given equation, so it will satisfy the given equation.

$$\therefore \quad 5\left(\frac{-2}{5}\right)^2 - 8\left(\frac{-2}{5}\right) + k = 0$$
$$\Rightarrow \quad \frac{4}{5} + \frac{16}{5} + k = 0 \Rightarrow 4 + k = 0 \Rightarrow k = -4$$

MtG 100 PERCENT Mathematics Class-10

12. Given,
$$3x^2 - 2ax + 2b = 0$$
 ...(i)
Since, $x = 2$ and $x = 3$ are the roots of (i), so these will
satisfy the given equation.
On putting $x = 2$ in (i), we get
 $3(2)^2 - 2a(2) + 2b = 0$
 $\Rightarrow 12 - 4a + 2b = 0 \Rightarrow 4a - 2b = 12$...(ii)

On putting x = 3 in (i), we get

 $3(3)^2 - 2a(3) + 2b = 0$

 $\Rightarrow 27 - 6a + 2b = 0 \Rightarrow 6a - 2b = 27 \qquad \dots (iii)$

Subtracting (ii) from (iii), we get

$$2a = 15 \Longrightarrow a = \frac{15}{2}$$

Substituting the value of *a* in (ii), we get

$$4\left(\frac{15}{2}\right) - 2b = 12 \Rightarrow 30 - 2b = 12 \Rightarrow 2b = 18 \Rightarrow b = 9$$

13. We have, $11x^2 - 26x - 21 = 0$
 $\Rightarrow 11x^2 - 33x + 7x - 21 = 0 \Rightarrow 11x(x - 3) + 7(x - 3) = 0$
 $\Rightarrow (x - 3)(11x + 7) = 0 \Rightarrow x - 3 = 0 \text{ or } 11x + 7 = 0$
 $\Rightarrow x = 3 \text{ or } x = \frac{-7}{11}$
Hence, 3 and $\frac{-7}{11}$ are the two roots of the given equation.
14. We have, $2x^2 - 17x + 21 = 0$
 $\Rightarrow 2x^2 - 14x - 3x + 21 = 0 \Rightarrow 2x(x - 7) - 3(x - 7) = 0$
 $\Rightarrow (x - 7)(2x - 3) = 0 \Rightarrow x - 7 = 0 \text{ or } 2x - 3 = 0$
 $\Rightarrow x = 7 \text{ or } x = \frac{3}{2}$

Hence, 7 and $\frac{3}{2}$ are the two roots of the given equation.

- **15.** We have, $2ax^2 (2a b^2)x b^2 = 0$ ⇒ $2ax^2 - 2ax + b^2x - b^2 = 0 \Rightarrow 2ax(x - 1) + b^2(x - 1) = 0$ ⇒ $(x - 1)(2ax + b^2) = 0 \Rightarrow x - 1 = 0$ or $2ax + b^2 = 0$
- $\Rightarrow x = 1 \text{ or } x = -\frac{b^2}{2a}$

Hence, 1 and $-\frac{b^2}{2a}$ are the two roots of the given equation.

16. We have,
$$x^2 + (1 + \sqrt{5})x + \sqrt{5} = 0$$

 $\Rightarrow x^2 + x + \sqrt{5}x + \sqrt{5} = 0$
 $\Rightarrow x(x + 1) + \sqrt{5}(x + 1) = 0 \Rightarrow (x + 1)(x + \sqrt{5}) = 0$
 $\Rightarrow x + 1 = 0 \text{ or } x + \sqrt{5} = 0 \Rightarrow x = -1 \text{ or } x = -\sqrt{5}$

Hence, -1 and $-\sqrt{5}$ are the two roots of the given equation.

0

 \Rightarrow

17. Let original average speed of the train be *x* km/hr. According to question,

$$\frac{63}{x} + \frac{72}{x+6} = 3 \implies \frac{7}{x} + \frac{8}{x+6} = \frac{1}{3} \implies \frac{7(x+6) + 8x}{x(x+6)} = \frac{1}{3}$$

 \Rightarrow 3 (7x + 42 + 8x) = x² + 6x \Rightarrow 45x + 126 = x² + 6x $\Rightarrow x^2 - 39x - 126 = 0 \Rightarrow x^2 - 42x + 3x - 126 = 0$ \Rightarrow $(x-42)(x+3) = 0 \Rightarrow x-42 = 0$ or x+3=0 $\Rightarrow x = 42$ (:: x > 0 so $x \neq -3$) Hence, the original speed of the train is 42 km/hr. **18.** Let the marked price of the book be $\gtrless x$. Total cost = ₹ 300 \therefore Number of books = $\frac{300}{r}$ If price of the book is $\mathbb{E}(x-5)$, then Number of books $=\frac{300}{x-5}$ According to question, $\frac{300}{x-5} - \frac{300}{x} = 5 \implies \frac{300x - 300(x-5)}{(x-5)x} = 5$ $\Rightarrow 1500 = 5(x^2 - 5x) \Rightarrow x^2 - 5x - 300 = 0$ $\Rightarrow x^2 - 20x + 15x - 300 = 0 \Rightarrow x(x - 20) + 15(x - 20) = 0$ \Rightarrow (x - 20) $(x + 15) = 0 \Rightarrow x = 20$ or x = -15Since, *x* has to be a positive integer, so x = -15 is rejected. x = 20÷. Hence, original marked price of the book is ₹ 20. **19.** We have, $p^2x^2 + (p^2 - q^2)x - q^2 = 0$ Comparing this equation with $ax^2 + bx + c = 0$, we have $a = p^2, b = p^2 - q^2$ and $c = -q^2$:. $b^2 - 4ac = (p^2 - q^2)^2 - 4 \times p^2 \times (-q^2)$ $= (p^2 - q^2)^2 + 4p^2q^2 = (p^2 + q^2)^2 > 0$

So, the given equation has real roots, which are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(p^2 - q^2) \pm (p^2 + q^2)}{2p^2}$$

$$\Rightarrow \quad x = \frac{-p^2 + q^2 + p^2 + q^2}{2p^2} = \frac{q^2}{p^2}$$

or
$$\quad x = \frac{-p^2 + q^2 - p^2 - q^2}{2p^2} = -1$$

Hence, the roots are $\frac{q^2}{p^2}$ and -1.

20. We have, $9x^2 - 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0$ Comparing this equation with $Ax^2 + Bx + C = 0$, we have A = 9, B = -9(a + b) and $C = 2a^2 + 5ab + 2b^2$ ∴ $B^2 - 4AC = 81(a + b)^2 - 36(2a^2 + 5ab + 2b^2)$ $= 9a^2 + 9b^2 - 18ab = 9(a - b)^2 \ge 0$

So, the roots of the given equation are real and are given by

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{9(a+b) \pm 3(a-b)}{18}$$
$$x = \frac{9(a+b) + 3(a-b)}{18} = \frac{12a+6b}{18} = \frac{2a+b}{3}$$

or
$$x = \frac{9(a+b) - 3(a-b)}{18} = \frac{6a + 12b}{18} = \frac{a+2b}{3}$$

Hence, the roots are $\frac{2a+b}{3}$ and $\frac{a+2b}{3}$.

21. We have, $abx^2 + (b^2 - ac)x - bc = 0$ Comparing this equation with $Ax^2 + Bx + C = 0$, we have $A = ab, B = b^2 - ac$ and C = -bc∴ $B^2 - 4AC = (b^2 - ac)^2 - 4(ab)(-bc)$ $= (b^2 - ac)^2 + 4ab^2c = b^4 - 2ab^2c + a^2c^2 + 4ab^2c = (b^2 + ac)^2 \ge 0$

So, the given equation has real roots, which are given by

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{-(b^2 - ac) \pm (b^2 + ac)}{2ab}$$
$$\Rightarrow x = \frac{-(b^2 - ac) + (b^2 + ac)}{2ab} \text{ or } x = \frac{-(b^2 - ac) - (b^2 + ac)}{2ab}$$
$$\Rightarrow x = \frac{2ac}{2ab} \text{ or } x = \frac{-2b^2}{2ab} \Rightarrow x = \frac{c}{b} \text{ or } x = \frac{-b}{a}$$

Hence, the roots are $\frac{c}{b}$ and $\frac{-b}{a}$.

22. We have,
$$\frac{1}{x-3} - \frac{1}{x+5} = \frac{1}{6}$$
, $x \neq 3$, -5

$$\Rightarrow \frac{(x+5) - (x-3)}{(x-3)(x+5)} = \frac{1}{6} \Rightarrow (8)6 = x^2 + 2x - 15$$

$$\Rightarrow x^2 + 2x - 63 = 0$$

Comparing the equation with $ax^2 + bx + c = 0$, we get a = 1, b = 2 and c = -63

$$\therefore \quad b^2 - 4ac = (2)^2 - 4(1)(-63) = 4 + 252 = 256 > 0$$

So, the given equation has real roots, which are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{256}}{2(1)} = \frac{-2 \pm 16}{2}$$

$$\Rightarrow x = \frac{-2 + 16}{2} \text{ or } x = \frac{-2 - 16}{2} \Rightarrow x = 7 \text{ or } x = -9$$

Hence, the roots are 7 and -9.
23. We have, $x^2 + x + 7 = 0$
Here, $a = 1, b = 1$ and $c = 7$.

$$\therefore D = b^2 - 4ac = (1)^2 - 4(1)(7) = 1 - 28 = -27$$

24. We have, $(4x - 3)^2 + 20x = 11$

$$\Rightarrow 16x^2 + 9 - 24x + 20x = 11$$

$$\Rightarrow 16x^2 - 4x - 2 = 0 \Rightarrow 8x^2 - 2x - 1 = 0$$

Here, $a = 8, b = -2$ and $c = -1$.

$$\therefore D = b^2 - 4ac = (-2)^2 - 4(8)(-1) = 4 + 32 = 36$$

25. We have, $x^2 - 8x + 16 = 0$
Here, $a = 1, b = -8$ and $c = 16$.

$$\therefore D = b^2 - 4ac = (-8)^2 - 4(1)(16) = 64 - 64 = 0$$

Thus, the given equation has real and equal roots.
26. We have, $4x^2 - 2\sqrt{3} x + 9 = 0$
Here, $a = 4, b = -2\sqrt{3}$ and $c = 9$

$$\therefore \quad D = b^2 - 4ac = \left(-2\sqrt{3}\right)^2 - 4(4)(9) = 12 - 144 = -132 < 0$$

Thus, the given equation has no real roots.

27. Let length of park = x m and breadth of park = y m. Perimeter of park = 2(x + y) = 80 (Given) $\Rightarrow x + y = 40 \Rightarrow y = 40 - x$ Area of park = xy = 300 (Given) $\Rightarrow x(40 - x) = 300 \Rightarrow 40x - x^2 = 300$ $\Rightarrow x^2 - 40x + 300 = 0$...(i) Here, a = 1, b = -40 and c = 300.

∴
$$D = b^2 - 4ac = (-40)^2 - 4(1)(300) = 1600 - 1200 = 400 > 0$$

∴ Roots of (i) are real and distinct.

Hence, it is possible to design the given rectangular park.

28. We have,
$$kx^2 + 2x - 3 = 0$$

Here, a = k, b = 2 and c = -3.

 $\therefore \quad D = b^2 - 4ac = (2)^2 - 4(k)(-3) = 4 + 12k$

Now, the given equation has real and equal roots, so D = 0

$$\Rightarrow 4 + 12k = 0 \Rightarrow k = \frac{-4}{12} = \frac{-1}{3}$$
29. We have, $2x^2 - 10x + k = 0$
Here, $a = 2$, $b = -10$ and $c = k$.

$$\therefore D = b^2 - 4ac = (-10)^2 - 4(2)(k) = 100 - 8k$$
Now, the given equation has real and equal roots, so $D = 0$

 $\Rightarrow \quad 100 - 8k = 0 \Rightarrow k = \frac{100}{8} = \frac{20}{2}$ **30.** We have, $5x^2 + kx - 4 = 0$ Here, a = 5, b = k and c = -4. :. $D = b^2 - 4ac = k^2 - 4(5)(-4) = k^2 + 80$ Now, the given equation has real and equal roots, if D = 0 $\Rightarrow k^2 + 80 = 0$ But k^2 is always positive. So, for no value of k, D = 0. Hence, equation has no real and equal roots. **31.** We have, $(n + 3)x^2 - (5 - n)x + 1 = 0$ Here, a = n + 3, b = -(5 - n) and c = 1. :. $D = b^2 - 4ac = (-(5 - n))^2 - 4(n + 3)(1)$ $= 25 + n^2 - 10n - 4n - 12$ $= n^{2} - 14n + 13 = n^{2} - 13n - n + 13$ = n(n - 13) - 1(n - 13) = (n - 13)(n - 1)Now, the given equation has coincident roots, *i.e.*, equal roots, so D = 0

 \Rightarrow $(n-13)(n-1) = 0 \Rightarrow n = 1 \text{ or } n = 13$

MtG BEST SELLING BOOKS FOR CLASS 10

X

10

10

10

10

Visit www.mtg.in for complete information