Arithmetic Progressions

CHAPTER
5

NCERT FOCUS

SOLUTIONS

1. (i) Let us consider, first term, $a_1 =$ Fare for the first 1 km = ₹ 15 since, the taxi fare after the first 1 km is ₹ 8 for each additional km.

∴ Fare for 2 km = ₹ 15 + ₹ 8 = ₹ 23

Fare for 3 km = ₹ 23 + ₹ 8 = ₹ 31 = ₹ 15 + 2 × ₹ 8

Fare for 4 km = ₹ 31 + ₹ 8 = ₹ 39 = ₹ 15 + 3 × ₹ 8

Fare for 5 km = ₹ 39 + ₹ 8 = ₹ 47 = ₹ 15 + 4 × ₹ 8

We see that fare for each km forms an A.P., with common difference 8.

- (ii) Let the amount of air in the cylinder = x
- \therefore Air removed in 1st stroke = x / 4

 $\Rightarrow \text{ Air left after } 1^{\text{st}} \text{ stroke } = x - \frac{x}{4} = \frac{3x}{4}$ Air left after 2^{nd} stroke

 $=\frac{3x}{4} - \frac{1}{4}\left(\frac{3x}{4}\right) = \frac{3x}{4} - \frac{3x}{16} = \frac{9x}{16}$

Air left after 3rd stroke

$$= \frac{9x}{16} - \frac{1}{4} \left(\frac{9x}{16} \right) = \frac{9x}{16} - \frac{9x}{64} = \frac{27x}{64}$$

Air left after 4th stroke

	_ 27 <i>x</i>	1(27x	_ 27	7 <i>x</i>	27 <i>x</i>	81	x
	64	$-\frac{1}{4}$	$\overline{64}$	6	4	256	25	6
Thus	, the ter	ms a	are x	$\frac{3x}{4}$	$\frac{9x}{16}$	$\frac{27x}{64}$	/ <u>81</u> / <u>25</u>	ر 6

Here,
$$\frac{3x}{4} - x = \frac{-x}{4}, \frac{9x}{16} - \frac{3x}{4} = \frac{-3x}{16}$$

Since, $\left(\frac{-x}{4}\right) \neq \left(\frac{-3x}{4}\right)$.

(4) (16) The above terms are not in A.P.

- (iii) Here, the cost of digging for first 1 metre = ₹ 150
- The cost of digging for first 2 metres = ₹ 150 + ₹ 50 = ₹ 200
- The cost of digging for first 3 metres

= ₹ 200 + ₹ 50 = ₹ 250 = ₹ 150 + 2 × (₹ 50) The cost of digging for first 4 metres

= ₹ 250 + ₹ 50 = ₹ 300 = ₹ 150 + 3 × (₹ 50) We see that the cost of digging a well for each subsequent metre form an A.P., with common difference = 50. (iv) ∵ The amount at the end of 1st year

 $= 10000 \left(1 + \frac{8}{100}\right)^{1}$

The amount at the end of 2^{nd} year = $10000 \left(1 + \frac{8}{100}\right)^2$

The amount at the end of $3^{\rm rd}$ year = $10000 \left(1 + \frac{8}{100} \right)^3$ The amount at the end of 4^{th} year = $10000 \left(1 + \frac{8}{100} \right)^4$ The terms are [10000], $10000 \left(1 + \frac{8}{100} \right) \right|$, ÷ $\left| 10000 \left(1 + \frac{8}{100} \right)^2 \right|, \left| 10000 \left(1 + \frac{8}{100} \right)^3 \right|, \dots$ Obviously, $\left[10000 \left(1 + \frac{8}{100} \right) \right] - [10000]$ $\neq \left| 10000 \left(1 + \frac{8}{100} \right)^2 \right| - \left[10000 \left(1 + \frac{8}{100} \right) \right]$ *:*.. The above terms are not in A.P. 2. (i) Here, *a* = 10 and *d* = 10 We have, first term, $a = a_1 = 10$ Second term, $a_2 = 10 + 10 = 20$ Third term, $a_3 = 20 + 10 = 30$ and Fourth term, $a_4 = 30 + 10 = 40$ Thus, the first four terms are 10, 20, 30 and 40. (ii) Here, a = -2 and d = 0, we have Since, d = 0, so each term of given A.P. will be same as the first term of the A.P. Thus, the first four terms of the A.P. are -2, -2, -2 and -2. (iii) Here, a = 4 and d = -3, We have, first term, $a = a_1 = 4$ Second term, $a_2 = 4 + (-3) = 1$ Third term, $a_3 = 1 + (-3) = -2$ and Fourth term, $a_4 = -2 + (-3) = -5$ Thus, the first four terms are 4, 1, –2 and –5. (iv) Here, a = -1 and d = 1/2We have, first term, $a = a_1 = -1$, Second term, $a_2 = -1 + \frac{1}{2} = -\frac{1}{2}$, Third term, $a_3 = -\frac{1}{2} + \frac{1}{2} = 0$ and Fourth term, $a_4 = 0 + \frac{1}{2} = \frac{1}{2}$ Thus, the first four terms are -1, $-\frac{1}{2}$, 0 and $\frac{1}{2}$. *.*.. (v) Here, a = -1.25 and d = -0.25We have, first term, $a = a_1 = -1.25$ Second term, $a_2 = -1.25 + (-0.25) = -1.50$, Third term, $a_3 = -1.50 + (-0.25) = -1.75$ and

2

MtG 100 PERCENT Mathematics Class-10

(iv) We have ; -10, -6, -2, 2,

Fourth term, $a_4 = -1.75 + (-0.25) = -2.0$ Thus, the first four terms are -1.25, -1.50, -1.75 and -2.0. 3. (i) We have ; 3, 1, -1, -3, $a_1 = 3$ \therefore First term = 3 Also, $a_2 = 1$, $a_3 = -1$, $a_4 = -3$ $a_2 - a_1 = 1 - 3 = -2$ ÷. $a_4 - a_3 = -3 - (-1) = -3 + 1 = -2$ Common difference, d = -2 \Rightarrow (ii) We have ; -5, -1, 3, 7, ... •.• $a_1 = -5$: First term = -5 Also, $a_2 = -1$, $a_3 = 3$, $a_4 = 7$ \therefore $a_2 - a_1 = -1 - (-5) = -1 + 5 = 4$ and $a_4 - a_3 = 7 - 3 = 4 \implies$ Common difference, d = 4(iii) We have ; $\frac{1}{3}$, $\frac{5}{3}$, $\frac{9}{3}$, $\frac{13}{3}$, $a_1 = \frac{1}{3}$:. First term $= \frac{1}{3}$... Also, $a_2 = \frac{5}{3}$, $a_3 = \frac{9}{3}$, $a_4 = \frac{13}{3}$ $a_2 - a_1 = \frac{5}{3} - \frac{1}{3} = \frac{4}{3}$ and $a_4 - a_3 = \frac{13}{3} - \frac{9}{3} = \frac{4}{3}$ *:*.. Common difference, d = 4/3 \Rightarrow (iv) We have ; 0.6, 1.7, 2.8, 3.9, $a_1 = 0.6$... First term = 0.6*.*... Also, *a*₂ = 1.7, *a*₃ = 2.8, *a*₄ = 3.9 \therefore $a_2 - a_1 = 1.7 - 0.6 = 1.1$ and $a_4 - a_3 = 3.9 - 2.8 = 1.1 \implies$ Common difference, d = 1.1(i) We have ; 2, 4, 8, 16, 4. Here, $a_1 = 2$, $a_2 = 4$, $a_3 = 8$, $a_4 = 16$ \therefore $a_2 - a_1 = 4 - 2 = 2$ and $a_4 - a_3 = 16 - 8 = 8$ Since, $a_2 - a_1 \neq a_4 - a_3$ The given numbers do not form an A.P. *.*.. (ii) We have ; 2, $\frac{5}{2}$, 3, $\frac{7}{2}$, Here, $a_1 = 2$, $a_2 = \frac{5}{2}$, $a_3 = 3$, $a_4 = \frac{7}{2}$ \therefore $a_2 - a_1 = \frac{5}{2} - 2 = \frac{1}{2}, a_3 - a_2 = 3 - \frac{5}{2} = \frac{1}{2}$ and $a_4 - a_3 = \frac{7}{2} - 3 = \frac{1}{2}$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \frac{1}{2}$ •.• \Rightarrow Common difference, d = 1/2*.*.. The given numbers form an A.P. Now, $a_5 = \frac{7}{2} + \frac{1}{2} = 4$, $a_6 = 4 + \frac{1}{2} = \frac{9}{2}$ and $a_7 = \frac{9}{2} + \frac{1}{2} = 5$ (iii) We have ; -1.2, -3.2, -5.2, -7.2, Here, $a_1 = -1.2$, $a_2 = -3.2$, $a_3 = -5.2$, $a_4 = -7.2$ $a_2 - a_1 = -3.2 + 1.2 = -2$ $a_3 - a_2 = -5.2 + 3.2 = -2$ and $a_4 - a_3 = -7.2 + 5.2 = -2$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = -2$ \Rightarrow Common difference, d = -2The given numbers form an A.P. ·.. Now, $a_5 = -7.2 + (-2) = -9.2$, $a_6 = -9.2 + (-2) = -11.2$ and $a_7 = -11.2 + (-2) = -13.2$

Here, $a_1 = -10$, $a_2 = -6$, $a_3 = -2$, $a_4 = 2$ $\therefore a_2 - a_1 = -6 + 10 = 4,$ $a_3 - a_2 = -2 + 6 = 4$ and $a_4 - a_3 = 2 + 2 = 4$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 4$ \Rightarrow Common difference, d = 4The given numbers form an A.P. ÷. Now, $a_5 = 2 + 4 = 6$, $a_6 = 6 + 4 = 10$ and $a_7 = 10 + 4 = 14$ (v) We have ; $3, 3 + \sqrt{2}, 3 + 2\sqrt{2}, 3 + 3\sqrt{2}, \dots$ Here, $a_1 = 3$, $a_2 = 3 + \sqrt{2}$, $a_3 = 3 + 2\sqrt{2}$, $a_4 = 3 + 3\sqrt{2}$ $a_2 - a_1 = 3 + \sqrt{2} - 3 = \sqrt{2}$ ÷ $a_3 - a_2 = 3 + 2\sqrt{2} - 3 - \sqrt{2} = \sqrt{2}$ and $a_4 - a_3 = 3 + 3\sqrt{2} - 3 - 2\sqrt{2} = \sqrt{2}$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \sqrt{2}$ •.• \Rightarrow Common difference, $d = \sqrt{2}$ \therefore The given numbers form an A.P. Now, $a_5 = 3 + 3\sqrt{2} + \sqrt{2} = 3 + 4\sqrt{2}$, $a_6 = 3 + 4\sqrt{2} + \sqrt{2} = 3 + 5\sqrt{2}$ and $a_7 = 3 + 5\sqrt{2} + \sqrt{2} = 3 + 6\sqrt{2}$ (vi) We have ; 0.2, 0.22, 0.222, 0.2222, Here, $a_1 = 0.2$, $a_2 = 0.22$, $a_3 = 0.222$, $a_4 = 0.2222$ $a_2 - a_1 = 0.22 - 0.2 = 0.02$ and *:*.. $a_4 - a_3 = 0.2222 - 0.222 = 0.0002$ Since, $a_2 - a_1 \neq a_4 - a_3$ \therefore The given numbers do not form an A.P. (vii) We have ; 0, - 4, - 8, - 12, Here, $a_1 = 0$, $a_2 = -4$, $a_3 = -8$, $a_4 = -12$ $\therefore a_2 - a_1 = -4 - 0 = -4,$ $a_3 - a_2 = -8 + 4 = -4$ and $a_4 - a_3 = -12 + 8 = -4$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = -4$ •.• \Rightarrow Common difference, d = -4The given numbers form an A.P. Now, $a_5 = a_4 + (-4) = -12 + (-4) = -16$ $a_6 = a_5 + (-4) = -16 + (-4) = -20$ and $a_7 = a_6 + (-4) = -20 + (-4) = -24$ (viii) We have ; $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$, Here, $a_1 = a_2 = a_3 = a_4 = -\frac{1}{2}$ \therefore $a_2 - a_1 = 0, a_3 - a_2 = 0, a_4 - a_3 = 0$ \Rightarrow Common difference, d = 0*.*.. The given numbers form an A.P. Now, $a_5 = -\frac{1}{2} + 0 = -\frac{1}{2}$ $a_6 = -\frac{1}{2} + 0 = -\frac{1}{2}$ and $a_7 = -\frac{1}{2} + 0 = -\frac{1}{2}$ (ix) We have ; 1, 3, 9, 27, ... Here, $\begin{vmatrix} a_1 = 1 \\ a_2 = 3 \end{vmatrix} \Rightarrow a_2 - a_1 = 3 - 1 = 2$

Also, $\begin{array}{c} a_3 = 9 \\ a_4 = 27 \end{array} \} \Rightarrow a_4 - a_3 = 27 - 9 = 18$ Since, $a_2 - a_1 \neq a_4 - a_3$... The given numbers do not form an A.P. (x) We have ; *a*, 2*a*, 3*a*, 4*a*, Here, $a_1 = a$, $a_2 = 2a$, $a_3 = 3a$, $a_4 = 4a$ $a_2 - a_1 = 2a - a = a, a_3 - a_2 = 3a - 2a = a$ *.*.. and $a_4 - a_3 = 4a - 3a = a$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = a_4$ •:• \Rightarrow Common difference, d = aThe given numbers form an A.P. Now, $a_5 = 4a + a = 5a$, $a_6 = 5a + a = 6a$ and $a_7 = 6a + a = 7a$ (xi) We have ; a, a^2, a^3, a^4, \dots Here, $\begin{vmatrix} a_1 = a \\ a_2 = a^2 \end{vmatrix} \Rightarrow a_2 - a_1 = a^2 - a = a(a - 1)$ Also, $\begin{vmatrix} a_3 &= a^3 \\ a_4 &= a^4 \end{vmatrix} \Rightarrow a_4 - a_3 = a^4 - a^3 = a^3(a-1)$ Since, $a_2 - a_1 \neq a_4 - a_3$ The given numbers do not form an A.P. *.*.. (xii) We have ; $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$, $a_1 = \sqrt{2}, a_2 = \sqrt{8}, a_3 = \sqrt{18}, a_4 = \sqrt{32}$ \therefore $a_2 - a_1 = \sqrt{8} - \sqrt{2} = 2\sqrt{2} - \sqrt{2} = \sqrt{2}$ $a_3 - a_2 = \sqrt{18} - \sqrt{8} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2},$ and $a_4 - a_3 = \sqrt{32} - \sqrt{18} = 4\sqrt{2} - 3\sqrt{2} = \sqrt{2}$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \sqrt{2}$ • • \Rightarrow Common difference, $d = \sqrt{2}$ *.*.. The given numbers form an A.P. Now, $a_5 = 4\sqrt{2} + \sqrt{2} = 5\sqrt{2} = \sqrt{50}$, $a_6 = 5\sqrt{2} + \sqrt{2} = 6\sqrt{2} = \sqrt{72}$ and $a_7 = 6\sqrt{2} + \sqrt{2} = 7\sqrt{2} = \sqrt{98}$ (xiii) We have ; $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, Here, $\begin{vmatrix} a_1 = \sqrt{3} \\ a_2 = \sqrt{6} \end{vmatrix} \Rightarrow a_2 - a_1 = \sqrt{6} - \sqrt{3} = \sqrt{3}(\sqrt{2} - 1)$ Also, $\begin{vmatrix} a_3 = \sqrt{9} \\ a_4 = \sqrt{12} \end{vmatrix} \Rightarrow a_4 - a_3 = \sqrt{12} - \sqrt{9} = 2\sqrt{3} - 3 \\ = \sqrt{3}(2 - \sqrt{3})$ $\therefore \quad a_2 - a_1 \neq a_4 - a_3$ The given numbers do not form an A.P. (xiv) We have ; 1², 3², 5², 7², Here, $\begin{vmatrix} a_1 = 1^2 = 1 \\ a_2 = 3^2 = 9 \end{vmatrix} \Rightarrow a_2 - a_1 = 9 - 1 = 8$ $\begin{vmatrix} a_3 = 5^2 = 25 \\ a_4 = 7^2 = 49 \end{vmatrix} \Rightarrow a_4 - a_3 = 49 - 25 = 24$ Also, Since, $a_2 - a_1 \neq a_4 - a_3$

The given numbers do not form an A.P. (xv) We have ; 1², 5², 7², 73, Here, $a_1 = 1^2$, $a_2 = 5^2$, $a_3 = 7^2$, $a_4 = 73$ \therefore $a_2 - a_1 = 25 - 1 = 24, a_3 - a_2 = 49 - 25 = 24$ and $a_4 - a_3$ $= 73 - 7^2 = 73 - 49 = 24$ $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 24$ \Rightarrow Common difference, d = 24The given numbers form an A.P. Now, $a_5 = 73 + 24 = 97$, $a_6 = 97 + 24 = 121$ and $a_7 = 121 + 24 = 145$ EXERCISE - 5.2 **1.** (i) $a_n = a + (n - 1)d$ $\Rightarrow a_8 = 7 + (8 - 1)3 = 7 + 7 \times 3 = 7 + 21$:. $a_8 = 28$ (ii) $a_n = a + (n - 1)d$ $\Rightarrow a_{10} = -18 + (10 - 1)d \Rightarrow 0 = -18 + 9d$ $\Rightarrow 9d = 18 \Rightarrow d = 18/9 = 2$ \therefore d = 2(iii) $a_n = a + (n - 1)d$ $\Rightarrow a_{18} = a + (18 - 1) \times (-3) \Rightarrow -5 = a + 17 \times (-3)$ $\Rightarrow -5 = a - 51 \Rightarrow a = -5 + 51 = 46$ ∴ *a* = 46 (iv) $a_n = a + (n - 1)d$ \Rightarrow 3.6 = -18.9 + (n - 1) × 2.5 \Rightarrow $(n-1) \times 2.5 = 3.6 + 18.9$ $\Rightarrow (n-1) \times 2.5 = 22.5 \Rightarrow n-1 = \frac{22.5}{25} = 9$ \Rightarrow n = 9 + 1 = 10:. *n* = 10 (v) $a_n = a + (n-1)d \Rightarrow a_{105} = 3.5 + (105 - 1) \times 0$ $\Rightarrow a_{105} = 3.5 + 104 \times 0 \Rightarrow a_{105} = 3.5 + 0 = 3.5$ $\therefore a_{105} = 3.5$ **2.** (i) (c) : Here, a = 10, n = 30 and d = 7 - 10 = -3 $a_n = a + (n - 1)d$ $a_{30} = 10 + (30 - 1) \times (-3)$ $= 10 + 29 \times (-3) = 10 - 87 = -77$ (ii) (b) : Here, *a* = -3, *n* = 11 and $d = -\frac{1}{2} - (-3) = -\frac{1}{2} + 3 = \frac{5}{2}$ $\therefore \quad a_n = a + (n-1)d$ \therefore $a_{11} = -3 + (11 - 1) \times 5/2 = -3 + 25 = 22$ **3.** (i) Here, a = 2, $a_3 = 26$ Let common difference = d $\therefore a_n = a + (n-1)d$ $\Rightarrow a_3 = 2 + (3 - 1)d \Rightarrow 26 = 2 + 2d$ \Rightarrow 2d = 26 - 2 = 24 \Rightarrow d = 24/2 = 12 The missing term = a + d = 2 + 12 = 14*.*. (ii) Let the first term = aand common difference = dHere, $a_2 = 13$ and $a_4 = 3$ $a_2 = a + d = 13, a_4 = a + 3d = 3$ \therefore $a_4 - a_2 = (a + 3d) - (a + d) = 3 - 13$ $\Rightarrow 2d = -10 \Rightarrow d = -10/2 = -5$ Now, $a + d = 13 \implies a + (-5) = 13$

4

 \Rightarrow a = 13 + 5 = 18Thus, missing terms are *a* and a + 2d*i.e.*, 18 and 18 + (-10) = 8 (iii) Here, a = 5 and $a_4 = 9\frac{1}{2} = \frac{19}{2}$ since, $a_4 = a + 3d$ $\Rightarrow \quad \frac{19}{2} = 5 + 3d \quad \Rightarrow \quad 3d = \frac{19}{2} - 5 = \frac{9}{2}$ $\Rightarrow \quad d = \frac{9}{2} \div 3 = \frac{9}{2} \times \frac{1}{3} = \frac{3}{2}$ The missing terms are : $a_2 = a + d = 5 + \frac{3}{2} = 6\frac{1}{2}$ ÷. and $a_3 = a + 2d = 5 + 2\left(\frac{3}{2}\right) = 8$ (iv) Here, a = -4, $a_6 = 6$ •.• $a_n = a + (n-1)d$ $\therefore a_6 = -4 + (6 - 1)d$ $\Rightarrow 6 = -4 + 5d \Rightarrow 5d = 10 \Rightarrow d = 2$ \therefore $a_2 = a + d = -4 + 2 = -2,$ $a_3 = a + 2d = -4 + 2(2) = 0,$ $a_4 = a + 3d = -4 + 3(2) = 2$ and $a_5 = a + 4d = -4 + 4(2) = 4$ The missing terms are – 2, 0, 2 and 4 *.*.. (v) Here, $a_2 = 38$ and $a_6 = -22$:. $a_2 = a + d = 38, a_6 = a + 5d = -22$ $\Rightarrow a_6 - a_2 = a + 5d - (a + d) = -22 - 38$ \Rightarrow 4d = -60 \Rightarrow d = -60/4 = -15 \therefore $a + d = 38 \implies a + (-15) = 38$ \Rightarrow a = 38 + 15 = 53Now, $a_3 = a + 2d = 53 + 2(-15) = 53 - 30 = 23$, $a_4 = a + 3d = 53 + 3(-15) = 53 - 45 = 8$ and $a_5 = a + 4d = 53 + 4(-15) = 53 - 60 = -7$ Thus, missing terms are 53, 23, 8 and -7 Let the n^{th} term = 78 4. Here, $a = 3 \implies a_1 = 3$ and $a_2 = 8$ $\therefore d = a_2 - a_1 = 8 - 3 = 5$ And, $a_n = a + (n + 1)d$ \Rightarrow 78 = 3 + (n - 1) × 5 \Rightarrow 78 - 3 = (n - 1) × 5 \Rightarrow 75 = (n - 1) × 5 \Rightarrow (n - 1) = 15 \Rightarrow n = 16 Thus, 78 is the 16^{th} term of the given A.P. (i) Here, *a* = 7, *d* = 13 – 7 = 6 5. Let total number of terms be *n*. $a_n = 205$. Now, $a_n = a + (n - 1) \times d$ *.*.. \Rightarrow 7 + (n - 1) × 6 = 205 \Rightarrow $(n-1) \times 6 = 205 - 7 = 198$ n = 33 + 1 = 34. ÷. Thus, the required number of terms is 34. (ii) Here, a = 18, $d = 15\frac{1}{2} - 18 = \frac{31}{2} - 18 = \frac{-5}{2}$ Let the n^{th} term = -47 $a_n = a + (n - 1)d$ *.*.. $\Rightarrow -47 = 18 + (n-1) \times \left(-\frac{5}{2}\right)$ $\Rightarrow -47 - 18 = (n-1) \times \left(\frac{-5}{2}\right) \Rightarrow -65 = (n-1) \times \left(\frac{-5}{2}\right)$ \Rightarrow $n-1 = -65 \times \left(\frac{-2}{5}\right) \Rightarrow n-1 = 26$

MtG 100 PERCENT Mathematics Class-10

 \Rightarrow n = 26 + 1 = 27Thus, the required number of terms is 27. For the given A.P., we have *a* = 11, *d* = 8 – 11 = –3 Let -150 be the n^{th} term of the given A.P. $\therefore \quad a_n = a + (n-1)d$ \Rightarrow -150 = 11 + (n - 1) × (-3) \Rightarrow -150 - 11 = (n - 1) × (-3) \Rightarrow -161 = (n - 1) × (-3) \Rightarrow n - 1 = $\frac{-161}{-3} = \frac{161}{3}$ $n = \frac{161}{3} + 1 = \frac{164}{3}$, which is a fraction \Rightarrow But, *n* must be a positive integer. Thus, -150 is not a term of the given A.P. Here, $a_{11} = 38$ and $a_{16} = 73$ 7. If the first term = a and the common difference = d. Then, $a + (11 - 1)d = 38 \implies a + 10d = 38$...(i) and $a + (16 - 1)d = 73 \implies a + 15d = 73$...(ii) Subtracting (i) from (ii), we get (a + 15d) - (a + 10d) = 73 - 38 \Rightarrow 5d = 35 \Rightarrow d = 35/5 = 7 From (i), a + 10(7) = 38 \Rightarrow $a + 70 = 38 \Rightarrow a = 38 - 70 = -32$ $a_{31} = -32 + (31 - 1) \times 7$ $= -32 + 30 \times 7 = -32 + 210 = 178$ Thus, the 31st term is 178. Here, n = 50, $a_3 = 12$, $a_n = 106 \implies a_{50} = 106$ If the first term = a and the common difference = d \therefore $a_3 = a + 2d = 12$...(i) $a_{50} = a + 49d = 106$...(ii) Subtracting (i) from (ii), we get $\Rightarrow a_{50} - a_3 = a + 49d - (a + 2d) = 106 - 12$ \Rightarrow 47d = 94 \Rightarrow d = 94/47 = 2 From (i), we have a + 2d = 12 \Rightarrow $a + 2(2) = 12 \Rightarrow a = 12 - 4 = 8$ Now, $a_{29} = a + (29 - 1)d = 8 + (28) \times 2 = 8 + 56 = 64$ Thus, the 29th term is 64. 9. Here, $a_3 = 4$ and $a_9 = -8$ $\therefore a_n = a + (n-1)d$ $\Rightarrow a_3 = a + 2d = 4$...(i) $a_9 = a + 8d = -8$...(ii) Subtracting (i) from (ii), we get (a + 8d) - (a + 2d) = -8 - 4 $\Rightarrow 6d = -12 \Rightarrow d = -12/6 = -2$ Now, From (i), we have a + 2d = 4 \Rightarrow $a + 2(-2) = 4 \Rightarrow a = 4 + 4 = 8$ Let the n^{th} term of the A.P. be 0. $\therefore \quad a_n = a + (n-1)d = 0$ $\Rightarrow 8 + (n-1) \times (-2) = 0 \Rightarrow (n-1) \times (-2) = -8$ \Rightarrow $n-1 = -8/-2 = 4 \Rightarrow n = 4 + 1 = 5$ Thus, the 5th term of given A.P. is 0. **10.** Let *a* be the first term and *d* the common difference of the given A.P. Now, using $a_n = a + (n - 1)d$, we have $a_{17} = a + 16d, a_{10} = a + 9d$ According to the question, $a_{10} + 7 = a_{17}$

Arithmetic Progressions

 \Rightarrow (a+9d)+7=a+16d \Rightarrow $a + 9d - a - 16d = -7 \Rightarrow -7d = -7 \Rightarrow d = 1$ Thus, the common difference is 1. **11.** Here, *a* = 3, *d* = 15 – 3 = 12 Using $a_n = a + (n - 1)d$, we get $a_{54} = a + 53d = 3 + 53 \times 12 = 3 + 636 = 639$ Let a_n be 132 more than its 54th term. \therefore $a_n = a_{54} + 132 \implies a_n = 639 + 132 = 771$ Now, $a_n = 771 \implies a + (n - 1)d = 771$ \Rightarrow 3 + (n - 1) × 12 = 771 \Rightarrow $(n-1) \times 12 = 771 - 3 = 768$ \Rightarrow $(n-1) = 768/12 = 64 \Rightarrow n = 64 + 1 = 65$ Thus, 132 more than 54th term is the 65th term. **12.** Let for the 1^{st} A.P., the first term = a $a_{100} = a + 99d$ \Rightarrow And for the 2^{nd} A.P., the first term = a' $\Rightarrow a'_{100} = a' + 99d$ According to the condition, we have $a_{100} - a'_{100} = 100$ $\Rightarrow a + 99d - (a' + 99d) = 100$ $\Rightarrow a - a' = 100$ Let, $a_{1000} - a'_{1000} = x$ \therefore a + 999d - (a' + 999d) = x $a - a' = x \implies x = 100$ \Rightarrow The difference between their 1000th terms is 100. *.*.. **13.** The first three digit number divisible by 7 is 105. The last such three digit number is 994. ÷. The A.P. is 105, 112, 119,, 994 Here, *a* = 105 and *d* = 7 Let *n* be the required number of terms. $a_n = a + (n - 1)d$ *.*.. \Rightarrow 994 = 105 + (n - 1) × 7 \Rightarrow $(n-1) \times 7 = 994 - 105 = 889$ \Rightarrow (*n*-1) = 889/7 = 127 \Rightarrow n = 127 + 1 = 128Thus, there are 128 three-digits numbers which are divisible by 7. **14.** The multiple of 4 that lie between 10 and 250 are : 12, 16,, 248, which is an A.P. Here, *a* = 12 and *d* = 4 Let the number of terms = n*.*.. Using $a_n = a + (n - 1)d$, we get $a_n = 12 + (n - 1) \times 4$ \Rightarrow 248 = 12 + (n - 1) × 4 \Rightarrow $(n-1) \times 4 = 248 - 12 = 236$ \Rightarrow n-1=236/4=59 \Rightarrow n=59+1=60Thus, the required number of terms = 60. **15.** For the 1^{st} A.P. a = 63 and d = 65 - 63 = 2 $a_n = a + (n - 1)d = 63 + (n - 1) \times 2$ For the 2nd A.P. a = 3 and d = 10 - 3 = 7•.• $\therefore a_n = a + (n-1)d = 3 + (n-1) \times 7$ Now, according to the question $3 + (n - 1) \times 7 = 63 + (n - 1) \times 2$

 \Rightarrow $(n-1) \times 7 - (n-1) \times 2 = 63 - 3$ \Rightarrow 7n - 7 - 2n + 2 = 60 \Rightarrow 5n - 5 = 60 \Rightarrow 5n = 60 + 5 = 65 \Rightarrow n = 65/5 = 13 Thus, the 13th terms of the two given A.P.'s are equal. **16.** Let the first term = a and the common difference = dUsing, $a_n = a + (n - 1)d$, we have $a_3 = a + 2d \implies a + 2d = 16$...(i) And $a_7 = a + 6d$, $a_5 = a + 4d$ According to the question, $a_7 - a_5 = 12$ \Rightarrow (a+6d) - (a+4d) = 12 \Rightarrow a + 6d - a - 4d = 12 $\Rightarrow 2d = 12 \Rightarrow d = 6$...(ii) Now, from (i) and (ii), we have a + 2(6) = 16 \Rightarrow $a + 12 = 16 \Rightarrow a = 16 - 12 = 4$ The required A.P. is 4, [4 + 6], [4 + 2(6)], [4 + 2(*.*... [4 + 3(6)], or 4, 10, 16, 22, **17.** We have, the last term, l = 253Here, d = 8 - 3 = 5Since the n^{th} term from the last term is given by, l - (n - 1)d, \therefore We have 20th term from the end $= l - (20 - 1) \times 5 = 253 - 19 \times 5 = 253 - 95 = 158$ **18.** Let the first term = *a* and the common difference = *d* \therefore Using $a_n = a + (n - 1)d$, we get $a_4 + a_8 = 24 \implies (a + 3d) + (a + 7d) = 24$ \Rightarrow 2a + 10d = 24 \Rightarrow a + 5d = 12 ...(i) And $a_6 + a_{10} = 44$ \Rightarrow (a+5d) + (a+9d) = 44 \Rightarrow 2*a* + 14*d* = 44 \Rightarrow *a* + 7*d* = 22 ...(ii) Now, subtracting (i) from (ii), we get (a + 7d) - (a + 5d) = 22 - 12 $2d = 10 \implies d = 5$ \Rightarrow ...(iii) :. From (i), $a + 5 \times 5 = 12$ \Rightarrow a = 12 - 25 = -13Now, the first three terms of the A.P. are given by a, (a + d), (a + 2d)or -13, (-13 + 5), [-13 + 2(5)] or -13, -8, -3. **19.** Here, *a* = ₹ 5000 and *d* = ₹ 200 Let in the n^{th} year he gets ₹ 7000. \therefore Using $a_n = a + (n - 1)d$, we get $7000 = 5000 + (n - 1) \times 200$ \Rightarrow $(n-1) \times 200 = 7000 - 5000 = 2000$ \Rightarrow $n-1 = 2000/200 = 10 \Rightarrow n = 10 + 1 = 11$ Thus, the income becomes ₹ 7000 in 11 years *i.e.*, in year 2006. **20.** Here, a = ₹ 5 and d = ₹ 1.75In the n^{th} week her savings become ₹ 20.75. •.• ∴ *a_n* = ₹ 20.75 \therefore Using $a_n = a + (n - 1)d$, we have $20.75 = 5 + (n - 1) \times (1.75)$ \Rightarrow $(n-1) \times 1.75 = 20.75 - 5 \Rightarrow (n-1) \times 1.75 = 15.75$ $n-1 = \frac{15.75}{1.75} = 9 \implies n = 9 + 1 = 10$ Thus, the required number of years = 10.

MtG 100 PERCENT Mathematics Class-10

EXERCISE - 5.3

(i) Given A.P. is 2, 7, 12,.... to 10 terms. 1. Here, a = 2, d = 7 - 2 = 5, n = 10Since, $S_n = \frac{n}{2} [2a + (n-1)d]$ \therefore $S_{10} = \frac{10}{2} [2 \times 2 + (10 - 1) \times 5]$ $= 5[4 + 9 \times 5] = 5[49] = 245$ Thus, the sum of first 10 terms is 245. (ii) Given A.P. is - 37, - 33, - 29,..., to 12 terms. Here a = -37, d = -33 - (-37) = 4, n = 12Since, $S_n = \frac{n}{2} [2a + (n-1)d]$ \therefore $S_{12} = \frac{12}{2} [2(-37) + (12 - 1) \times 4]$ $= 6[-74 + 11 \times 4] = 6[-74 + 44] = 6 \times [-30] = -180$ Thus, the sum of first 12 terms = -180. (iii) Given A.P. is 0.6, 1.7, 2.8,..., to 100 terms. Here, *a* = 0.6, *d* = 1.7 – 0.6 = 1.1, *n* = 100 Since, $S_n = \frac{n}{2} [2a + (n-1)d]$ $\therefore S_{100} = \frac{100}{2} [2(0.6) + (100 - 1) \times 1.1]$ $= 50[1.2 + 99 \times 1.1] = 50[1.2 + 108.9]$ = 50[110.1] = 5505Thus, the sum of first 100 terms is 5505. (iv) Given A.P. is $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \dots$, to 11 terms. Here, $a = \frac{1}{15}$, $d = \frac{1}{12} - \frac{1}{15} = \frac{1}{60}$, n = 11Since, $S_n = \frac{n}{2} [2a + (n-1)d]$ $\therefore S_{11} = \frac{11}{2} \left[\left(2 \times \frac{1}{15} \right) + (11 - 1) \times \frac{1}{60} \right]$ $=\frac{11}{2}\left[\frac{2}{15}+\frac{1}{6}\right]=\frac{11}{2}\left[\frac{4+5}{30}\right]=\frac{11}{2}\times\frac{9}{30}=\frac{99}{60}=\frac{33}{20}$ Thus, the sum of first 11 terms = 33/20(i) The given numbers are : $7,10\frac{1}{2},14,...,84$ 2. Here, a = 7, $d = 10\frac{1}{2} - 7 = 3\frac{1}{2} = \frac{7}{2}$, l = 84Let *n* be the number of terms then, $a_n = a + (n - 1)d$ \Rightarrow 84 = 7 + (n - 1) $\times \frac{7}{2} \Rightarrow$ (n - 1) $\times \frac{7}{2} = 84 - 7 = 77$ \Rightarrow $n-1 = 77 \times \frac{2}{7} = 22 \Rightarrow n = 22 + 1 = 23$ Now, $S_n = \frac{n}{2}(a+l)$ \therefore $S_{23} = \frac{23}{2}(7+84) = \frac{23}{2} \times 91 = \frac{2093}{2} = 1046\frac{1}{2}$ Thus, the required sum is $1046\frac{1}{2}$

(ii) The given numbers are : 34, 32, 30,..., 10 Here, *a* = 34, *d* = 32 – 34 = –2, *l* = 10 Let the number of terms be *n*. then, $a_n = a + (n - 1)d$ $\Rightarrow 10 = 34 + (n-1) \times (-2) \Rightarrow (n-1) \times (-2) = -24$ \Rightarrow $n-1 = \frac{-24}{-2} = 12 \Rightarrow n = 13$ Now, $S_n = \frac{n}{2} [2a + (n-1)d]$ \therefore $S_{13} = \frac{13}{2}[68 + 12 \times (-2)] = \frac{13}{2}[68 - 24]$ $=\frac{13}{2}[44]=13\times 22=286$ Thus, the required sum is 286. (iii) The given numbers are : - 5, - 8, -11,, - 230 Here, a = -5, d = -8 - (-5) = -3, l = -230Let *n* be the number of terms. then, $a_n = a + (n - 1)d$ \Rightarrow -230 = -5 + (*n* - 1) × (-3) \Rightarrow $(n-1) \times (-3) = -230 + 5 = -225$ $\Rightarrow n-1 = \frac{-225}{2} = 75 \Rightarrow n = 75 + 1 = 76$ Now, $S_n = \frac{n}{2}[a+l]$ So, $S_{76} = \frac{76}{2}[(-5) + (-230)] = 38 \times (-235) = -8930.$ The required sum is – 8930. 3. (i) Here, a = 5, d = 3 and $a_n = 50 = l$ $\therefore a_n = a + (n-1)d \implies 50 = 5 + (n-1) \times 3$ $\implies 50 - 5 = (n-1) \times 3 \implies (n-1) \times 3 = 45$ \Rightarrow $(n-1) = \frac{45}{2} = 15 \Rightarrow n = 15 + 1 = 16$ Now, $S_n = \frac{n}{2}(a+l) \implies S_{16} = \frac{16}{2}(5+50) = 8(55) = 440$ Thus, n = 16 and $S_n = 440$ (ii) Here, a = 7 and $a_{13} = 35 = l$:. $a_{13} = a + (13 - 1)d \implies 35 = 7 + (13 - 1)d$ \Rightarrow 35 - 7 = 12d \Rightarrow 28 = 12d \Rightarrow d = $\frac{28}{12} = \frac{7}{2}$ Now, $S_n = \frac{n}{2}(a+l)$ $\Rightarrow S_{12} = \frac{12}{2}(4+37) = \frac{13}{2} \times 42 = 13 \times 21 = 273$ Thus, $S_{13} = 273$ and $d = \frac{7}{2}$ (iii) Here, $a_{12} = 37 = l$ and d = 3Let the first term of the A.P. be *a*. Now, $a_{12} = a + (12 - 1)d$ \Rightarrow 37 = a + 11d \Rightarrow 37 = a + 11 × 3 \Rightarrow 37 = a + 33 \Rightarrow a = 37 - 33 = 4 Now, $S_n = \frac{n}{2}(a+l) \Rightarrow S_{12} = \frac{12}{2}(4+37) = 6 \times (41) = 246$ Thus, a = 4 and $S_{12} = 246$. (iv) Here, $a_3 = 15$ and $S_{10} = 125$ Let the first term of the A.P. be *a* and *d* be the common

difference.

 $a_3 = a + 2d \implies a + 2d = 15$ *.*.. Again, $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{10} = \frac{10}{2} [2a + (10 - 1)d]$ \Rightarrow $125 = 5[2a + 9d] \implies 2a + 9d = \frac{125}{5} = 25$ \Rightarrow 2a + 9d = 25 \Rightarrow ...(ii) Multiplying (i) by 2 and subtracting (ii) from it, we get 2a + 4d - 2a - 9d = 30 - 25 $-5d = 5 \implies d = -1.$ \Rightarrow From (i), a + 2(-1) = 15*.*... a = 17 \Rightarrow Now, $a_{10} = a + (10 - 1)d = 17 + 9 \times (-1) = 17 - 9 = 8$ Thus, d = -1 and $a_{10} = 8$ (v) Here, d = 5 and $S_9 = 75$ Let the first term of the A.P. is a $S_9 = \frac{9}{2}[2a + (9-1) \times 5] \implies 75 = \frac{9}{2}[2a + 40]$ *:*.. \Rightarrow 75 $\times \frac{2}{9} = 2a + 40 \Rightarrow \frac{50}{2} = 2a + 40$ $\Rightarrow 2a = \frac{50}{3} - 40 = \frac{-70}{3} \Rightarrow a = \frac{-70}{3} \times \frac{1}{2} = \frac{-35}{3}$ Now, $a_0 = a + (9 - 1)a$ $=\frac{-35}{2}+(8\times5)=\frac{-35}{2}+40=\frac{-35+120}{3}=\frac{85}{3}$ Thus, $a = \frac{-35}{3}$ and $a_9 = \frac{85}{3}$ (vi) Here, a = 2, d = 8 and $S_n = 90$ $S_n = \frac{n}{2} [2a + (n-1)d]$ ÷ $90 = \frac{n}{2} [2 \times 2 + (n-1) \times 8]$ ÷ $90 \times 2 = 4n + n(n-1) \times 8 \Longrightarrow 180 = 4n + 8n^2 - 8n^2$ \Rightarrow $180 = 8n^2 - 4n \implies 45 = 2n^2 - n$ \Rightarrow $2n^2 - n - 45 = 0 \implies 2n^2 - 10n + 9n - 45 = 0$ \Rightarrow $2n(n-5) + 9(n-5) = 0 \implies (2n+9)(n-5) = 0$ \Rightarrow Either, $2n + 9 = 0 \implies n = -9/2$ *:*.. Or $n-5=0 \Rightarrow n=5$ But $n = -\frac{9}{2}$ is not possible, so n = 5Now, $a_n = a + (n - 1)d$ $\Rightarrow a_5 = 2 + (5 - 1) \times 8 = 2 + 32 = 34$ Thus, n = 5 and $a_5 = 34$ (vii) Here, a = 8, $a_n = 62 = l$ and $S_n = 210$ Let the common difference = dNow, $S_n = \frac{n}{2}(a+l) \implies 210 = \frac{n}{2}(8+62) = \frac{n}{2} \times 70 = 35n$ $\therefore \quad n = \frac{210}{35} = 6$ Again, $a_n = a + (n - 1)d$ $62 = 8 + (6 - 1) \times d \implies 62 - 8 = 5d$ \Rightarrow $54 = 5d \implies d = \frac{54}{5}$. Thus, n = 6 and $d = \frac{54}{5}$. (viii) Here, $a_n = 4$, d = 2 and $S_n = -14$ Let the first term be 'a'.

...(i) $\therefore a_n = 4 \therefore a + (n-1)2 = 4 \implies a = 4 - 2n + 2$ $\implies a = 6 - 2n$...(i) Also, $S_n = \frac{n}{2}(a+l) \Rightarrow -14 = \frac{n}{2}(a+4)$ $\Rightarrow n(a+4) = -28$...(ii) Substituting the value of *a* from (i) into (ii), we get n[6 - 2n + 4] = -28 \Rightarrow $n[10 - 2n] = -28 \Rightarrow 2n[5 - n] = -28$ $\Rightarrow n(5-n) = -14 \Rightarrow 5n - n^2 + 14 = 0$ $\Rightarrow n^2 - 5n - 14 = 0 \Rightarrow (n - 7) (n + 2) = 0$ Either, $n - 7 = 0 \implies n = 7$ Or $n+2=0 \implies n=-2$ But *n* cannot be negative, so n = 7Now, from (i), we have $a = 6 - 2 \times 7 \implies a = -8$ Thus, *a* = –8 and *n* = 7 (ix) Here, a = 3, n = 8 and $S_n = 192$ Let *d* be the common difference. $S_n = \frac{n}{2} [2a + (n-1)d]$ \therefore 192 = $\frac{8}{2} [2(3) + (8-1)d]$ \Rightarrow 192 = 4[6 + 7d] \Rightarrow 192 = 24 + 28d \Rightarrow 28d = 192 - 24= 168 \Rightarrow d = 6 Thus, d = 6. (x) Here, l = 28 and $S_9 = 144$ Let the first term be 'a'. Thus $S_n = \frac{n}{2}(a+l)$ $\Rightarrow S_9 = \frac{9}{2}(a+28) \Rightarrow 144 = \frac{9}{2}(a+28)$ $\Rightarrow a+28 = 144 \times \frac{2}{9} = 16 \times 2 = 32 \Rightarrow a = 32 - 28 = 4$ Thus, a = 4. Here, a = 9, d = 17 - 9 = 8 and $S_n = 636$ 4. $S_n = \frac{n}{2}[2a + (n-1)d] = 636$ ÷.÷ $\frac{n}{2}[(2 \times 9) + (n-1) \times 8] = 636$ *.*.. \Rightarrow $n[18 + (n - 1) \times 8] = 1272 \Rightarrow 18n + 8n^2 - 8n = 1272$ $\Rightarrow 8n^2 + 10n = 1272 \Rightarrow 4n^2 + 5n - 636 = 0$ $\Rightarrow 4n^2 - 48n + 53n - 636 = 0$ \Rightarrow 4n (n - 12) + 53(n - 12) = 0 \Rightarrow $(n-12)(4n+53) = 0 \Rightarrow n = 12, -53/4$ As *n* can't be negative. \therefore Required number of terms = 12. Here, a = 5, $l = 45 = a_n$, $S_n = 400$ 5. $a_n = a + (n - 1)d$ ••• $\therefore 45 = 5 + (n - 1)d$ $\Rightarrow (n-1)d = 45 - 5 \Rightarrow (n-1)d = 40$...(i) Also $S_n = \frac{n}{2}(a+l) \Rightarrow 400 = \frac{n}{2}(5+45) \Rightarrow 400 \times 2 = n \times 50$ $\Rightarrow n = \frac{400 \times 2}{50} = 16$ From (i), we get $(16 - 1)d = 40 \Rightarrow 15d = 40 \Rightarrow d = 8/3$ We have, first term a = 17, last term, $l = 350 = a_n$ and common difference d = 9Let the number of terms be *n*.

$$\therefore a_n = a + (n-1)d$$

MtG 100 PERCENT Mathematics Class-10

$$\Rightarrow \quad a+8d = \frac{289}{17} = 17 \Rightarrow a+8d = 17 \qquad \dots (ii)$$

Subtracting (i) from (ii), we have a + 8d - a - 3d = 17 - 7 $\Rightarrow 5d = 10 \Rightarrow d = 2$ Now, from (i), we have $a + 3(2) = 7 \Rightarrow a = 7 - 6 = 1$

Now,
$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [2 \times 1 + (n-1) \times 2]$$

 $= \frac{n}{2} [2 + 2n - 2] = \frac{n}{2} [2n] = n \times n = n^2$
Thus, the required sum of *n* terms = n^2 .
10. (i) Here, $a_n = 3 + 4n$
Putting $n = 1, 2, 3, 4, \dots, n$, we get
 $a_1 = 3 + 4(1) = 7$
 $a_2 = 3 + 4(2) = 11$
 $a_3 = 3 + 4(3) = 15$
 $a_4 = 3 + 4(4) = 19$
 \dots \dots \dots
 $a_n = 3 + 4n$
 \therefore The A.P. in which $a = 7$ and $d = 11 - 7 = 4$ is 7, 11, 15,
19,, $(3 + 4n)$.
Now, $S_{15} = \frac{15}{2} [(2 \times 7) + (15 - 1) \times 4]$
 $= \frac{15}{2} [14 + (14 \times 4)] = \frac{15}{2} [14 + 56] = \frac{15}{2} [70]$
 $= 15 \times 35 = 525$
(ii) Here, $a_n = 9 - 5n$
Putting $n = 1, 2, 3, 4, \dots, n$, we get
 $a_1 = 9 - 5(1) = 4$
 $a_2 = 9 - 5(2) = -1$
 $a_3 = 9 - 5(3) = -6$
 $a_4 = 9 - 5(4) = -11$
 \dots \dots
 $a_n = 9 - 5n$
 \therefore The A.P. is $4, -1, -6, -11, \dots, 9 - 5n$ having first term
as 4 and $d = -1 - 4 = -5$
 \therefore $S_{15} = \frac{15}{2} [(2 \times 4) + (15 - 1) \times (-5)]$
 $= \frac{15}{2} [8 + 14 \times (-5)] = \frac{15}{2} [8 - 70] = \frac{15}{2} \times (-62)$
 $= 15 \times (-31) = -465$.

11. We have $S_n = 4n - n^2$ ∴ $S_1 = 4(1) - (1)^2 = 4 - 1 = 3 \implies$ First term = 3 $S_2 = 4(2) - (2)^2 = 8 - 4 = 4$ ⇒ Sum of first two terms = 4

⇒ Sum of first two terms = 4
∴ Second term
$$(S_2 - S_1) = 4 - 3 = 1$$

 $S_3 = 4(3) - (3)^2 = 12 - 9 = 3$

⇒ Sum of first 3 terms = 3
∴ Third term
$$(S_3 - S_2) = 3 - 4 = -1$$

 $S_9 = 4(9) - (9)^2 = 36 - 81 = -45$
 $S_{10} = 4(10) - (10)^2 = 40 - 100 = -60$
∴ Tenth term = $S_{10} - S_9 = [-60] - [-45] = -15$
Now, $S_n = 4(n) - (n)^2 = 4n - n^2$
Also, $S_{n-1} = 4(n-1) - (n-1)^2$
 $= 4n - 4 - [n^2 - 2n + 1]$
 $= 4n - 4 - n^2 + 2n - 1 = 6n - n^2 - 5$
∴ n^{th} term = $S_n - S_{n-1} = [4n - n^2] - [6n - n^2 - 5]$
 $= 4n - n^2 - 6n + n^2 + 5 = 5 - 2n$

Thus, $S_1 = 3$ and $a_1 = 3$ $S_2 = 4$ and $a_2 = 1$ $S_3 = 3$ and $a_3 = -1$ $a_{10} = -15$ and $a_n = 5 - 2n$

12. \therefore The first 40 positive integers divisible by 6 are 6, 12, 18,, (6 × 40)

And, these numbers are in A.P., such that a = 6d = 12 - 6 = 6 and $a_{40} = 6 \times 40 = 240 = l$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

∴ $S_{40} = \frac{40}{2} [(2 \times 6) + (40 - 1) \times 6]$
= 20[12 + 39 × 6] = 20[12 + 234]
= 20 × 246 = 4920

13. The first 15 multiples of 8 are 8, (8 × 2), (8 × 3), (8 × 4),, (8 × 15) or 8, 16, 24, 32,, 120. These number are in A.P., where *a* = 8 and *l* = 120

$$S_{15} = \frac{15}{2}[a+l] = \frac{15}{2}[8+120]$$
$$= \frac{15}{2} \times 128 = 15 \times 64 = 960$$

Thus, the sum of first 15 multiples of 8 is 960.

14. Odd numbers between 0 and 50 are 1, 3, 5, 7,, 49. These numbers are in A.P. such that a = 1 and l = 49Here, d = 3 - 1 = 2 $\therefore a_n = a + (n - 1)d$ $\Rightarrow 49 = 1 + (n - 1)2 \Rightarrow 49 - 1 = (n - 1)2$

$$\Rightarrow \quad (n-1) = \frac{48}{2} = 24 \quad \therefore \quad n = 24 + 1 = 25$$

Now,
$$S_{25} = \frac{25}{2}[1+49] = \frac{25}{2}[50] = 25 \times 25 = 625$$

Thus, the sum of odd numbers between 0 and 50 is 625.

15. Here, penalty for delay on

1st day = ₹ 200 2nd day = ₹ 250 3rd day = ₹ 300

Now, 200, 250, 300,, are in A.P. such that *a* = 200, *d* = 250 – 200 = 50

$$\therefore S_{30} \text{ is given by } S_{30} = \frac{30}{2} [2(200) + (30 - 1) \times 50] \\ \left[\text{Using } S_n = \frac{n}{2} [2a + (n - 1)d] \right] \\ = 15 [400 + 29 \times 50] = 15 [400 + 1450] \\ = 15 \times 1850 = 27750$$

Thus, penalty for the delay for 30 days is ₹ 27750.

16. Sum of all the prizes = ₹ 700 Let the first prize = *a*

Let the first prize = a

 $\therefore 2^{\text{nd}} \text{ prize} = (a - 20)$ $3^{\text{rd}} \text{ prize} = (a - 40)$ $4^{\text{th}} \text{ prize} = (a - 60)$

Thus, we have, first term = a

Common difference = -20

Sum of 7 terms, $S_7 = 700$

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $\Rightarrow 700 = \frac{7}{2} [2(a) + (7-1) \times (-20)]$
 $\Rightarrow 700 = \frac{7}{2} [2a + 6 \times (-20)] \Rightarrow 700 \times \frac{2}{7} = 2a - 120$

⇒ 200 = 2*a* - 120 ⇒ 2*a* = 320 ⇒ *a* = 320/2 = 160 Thus, the values of the seven prizes are ₹ 160, ₹(160 - 20), ₹(160 - 40), ₹(160 - 60), ₹(160 - 80), ₹(160 - 100) and ₹(160 - 120) = ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60 and ₹ 40.

17. Number of classes = 12

: Each class has 3 sections.

:. Number of plants planted by class I = $1 \times 3 = 3$ Number of plants planted by class II = $2 \times 3 = 6$ Number of plants planted by class III = $3 \times 3 = 9$ Number of plants planted by class IV = $4 \times 3 = 12$

Number of plants planted by class XII = $12 \times 3 = 36$ Thus, the numbers 3, 6, 9, 12,, 36 are in A.P. Here, a = 3 and d = 6 - 3 = 3

- \therefore Number of classes = 12 *i.e.*, *n* = 12
- Sum the *n* terms of the above A.P., is given by

$$S_{12} = \frac{12}{2} [2(3) + (12 - 1)3] \left[\text{Using } S_n = \frac{n}{2} [2a + (n - 1)d] \right]$$
$$= 6[6 + 11 \times 3] = 6[6 + 33] = 6 \times 39 = 234$$

Thus, the total number of trees = 234.

18. Length of a semi-circle = Semi-circumference

$$=\frac{1}{2}(2\pi r)=\pi r$$

$$\therefore \quad l_1 = \pi r_1 = 0.5 \ \pi \ \text{cm} = 1 \times 0.5 \ \pi \ \text{cm} \\ l_2 = \pi r_2 = 1.0 \ \pi \ \text{cm} = 2 \times 0.5 \ \pi \ \text{cm} \\ l_3 = \pi r_3 = 1.5 \ \pi \ \text{cm} = 3 \times 0.5 \ \pi \ \text{cm} \\ l_4 = \pi r_4 = 2.0 \ \pi \ \text{cm} = 4 \times 0.5 \ \pi \ \text{cm}$$

 $l_{13} = \pi r_{13} \text{ cm} = 6.5 \pi \text{ cm} = 13 \times 0.5 \pi \text{ cm}$ Now, length of the spiral = $l_1 + l_2 + l_3 + l_4 + \dots + l_{13}$ = $0.5\pi [1 + 2 + 3 + 4 + \dots + 13] \text{ cm} \dots (i)$ $\therefore 1, 2, 3, 4, \dots, 13 \text{ are in A.P. such that}$ a = 1 and l = 13

:
$$S_{13} = \frac{13}{2} [1+13] \left[\text{Using } S_n = \frac{n}{2} (a+l) \right]$$

= $\frac{13}{2} \times 14 = 13 \times 7 = 91$

: From (i), we have

Total length of the spiral = 0.5π [91] cm

$$=\frac{5}{10} \times \frac{22}{7} \times 91 \text{ cm} = 11 \times 13 \text{ cm} = 143 \text{ cm}$$

19. The number of logs in

 1^{st} row = 20, 2^{nd} row = 19 and 3^{rd} row = 18 Obviously, the numbers 20, 19, 18,, are in A.P., such that a = 20, d = 19 - 20 = -1Let the number of rows be n.

MtG 100 PERCENT Mathematics Class-10

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $\Rightarrow 200 = \frac{n}{2} [2(20) + (n-1) \times (-1)] \Rightarrow 200 = \frac{n}{2} [40 - (n-1)]$
 $\Rightarrow 200 = \frac{n}{2} [40 - (n-1)]$
 $\Rightarrow 2 \times 200 = n \times 40 - n(n-1)$
 $\Rightarrow 400 = 40n - n^2 + n \Rightarrow n^2 - 41n + 400 = 0$
 $\Rightarrow n^2 - 16n - 25n + 400 = 0$
 $\Rightarrow n(n-16) - 25(n-16) = 0$
 $\Rightarrow (n-16)(n-25) = 0$
Either $n - 16 = 0 \Rightarrow n = 16$
Or $n - 25 = 0 \Rightarrow n = 25$
 $a_n = 0 \Rightarrow a + (n-1)d = 0$
 $\Rightarrow 20 + (n-1) \times (-1) = 0 \Rightarrow n - 1 = 20$
 $\Rightarrow n = 21 \ i.e., 21^{st} \ term \ becomes 0$
 $\therefore n = 25 \ is \ not \ required.$
 $\therefore \ Number \ of \ rows = 16$
Now, $a_{16} = a + (16 - 1)d = 20 + 15 \times (-1) = 20 - 15 = 5$
 $\therefore \ Number \ of \ logs \ in \ the \ 16th \ (top) \ row \ is \ 5.$
20. Here, number \ of \ potatose = 10
The up-down distance \ of the bucket :
From the $1^{st} \ potato = [(5 + 3)m] \times 2 = 10 \ m$
From the $2^{rd} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $3^{rd} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3 + 3)m] \times 2 = 22 \ m$
From the $4^{th} \ potato = [(5 + 3 + 3 + 3)m] \times 2 = 22 \ m$

 $S_{10} = \frac{10}{2} [2(10) + (10 - 1) \times 6] = 5[20 + 54] = 5 \times 74 = 370$

Thus, the sum of above distance = 370 m.

 \Rightarrow The competitor has to run a total distance of 370 m.

EXERCISE - 5.4

1. We have the A.P. having *a* = 121 and *d* = 117 – 121 = -4

- Now, $a_n = a + (n 1)d = 121 + (n 1) \times (-4)$ = 121 - 4n + 4 = 125 - 4n
- For the first negative term, we have $a_n < 0$
- $\Rightarrow (125 4n) < 0 \Rightarrow 125 < 4n$

 $\Rightarrow \quad \frac{125}{4} < n \Rightarrow 31\frac{1}{4} < n \text{ or } n > 31\frac{1}{4}$

Thus, the first negative term is 32nd term.

2. Here, $a_3 + a_7 = 6$ and $a_3 \times a_7 = 8$

Let the first term =
$$a$$
 and the common difference = d

$$\therefore \quad a_3 = a + 2d \text{ and } a_7 = a + 6d$$

$$\therefore \quad a_3 + a_7 = 6$$

$$\therefore \quad (a+2d)+(a+6d)=6$$

 \Rightarrow 2*a* + 8*d* = 6 \Rightarrow *a* + 4*d* = 3 ...(i) Again, $a_3 \times a_7 = 8$ $\therefore \quad (a+2d) \times (a+6d) = 8$ $\Rightarrow \quad [(a+4d)-2d] \times [(a+4d)+2d] = 8$ $\Rightarrow (3 - 2d) \times (3 + 2d) = 8$ $\Rightarrow 3^2 - (2d)^2 = 8 \Rightarrow 9 - 4d^2 = 8$ [Using (i)] $\Rightarrow -4d^2 = 8 - 9 = -1$ $\Rightarrow d^2 = \frac{-1}{-4} = \frac{1}{4} \Rightarrow d = \pm \frac{1}{2}.$ Case-I When $d = \frac{1}{2}$, from (i), we have $a + 2 = 3 \Longrightarrow a = 3 - 2 = 1$ Now, using $S_n = \frac{n}{2} [2a + (n-1)d]$, we get The sum of first 16 terms, $S_{16} = \frac{16}{2} \left[2(1) + (16 - 1) \times \frac{1}{2} \right] = 8 \left[2 + \frac{15}{2} \right] = 16 + 60 = 76$ Case-II When $d = -\frac{1}{2}$, from (i), we have $a+4\left(-\frac{1}{2}\right)=3 \Rightarrow a-2=3 \Rightarrow a=5$ So, the sum of first 16 terms, $S_{16} = \frac{16}{2} \left| 2(5) + (16-1) \times \left(-\frac{1}{2} \right) \right|$ $= 8 \left[10 + \left(\frac{-15}{2} \right) \right] = 80 - 60 = 20$ 3. Distance between bottom and top rungs $= 2\frac{1}{2}$ m $=\frac{5}{2} \times 100 \text{ cm} = 250 \text{ cm}$

Distance between two consecutive rungs = 25 cm \therefore Number of rungs, n = 250/25 + 1 = 10 + 1 = 11Length of the 1st rung (bottom rung) = 45 cm Length of the 11th rung (top rung) = 25 cm Let the length of each successive rung decrease by *x* cm. \therefore Total length of the rungs = 45 cm + (45 - *x*) cm + (45 - 2*x*) cm + + 25 cm Here, the number 45, (45 - *x*), (45 - 2*x*),, 25 are in an A.P. such that first term, *a* = 45 and last term, *l* = 25 Number of terms, *n* = 11

$$\therefore \text{ Using, } S_n = \frac{n}{2}[a+l], \text{ we have } S_{11} = \frac{11}{2}[45+25]$$

$$\Rightarrow S_{11} = \frac{11}{2} \times 70 \Rightarrow S_{11} = 11 \times 35 = 385$$

 \therefore Total length of 11 rungs = 385 cm *i.e.*, Length of wood required for the rungs is 385 cm.

4. We have the following consecutive numbers on the houses of a row; 1, 2, 3, 4, 5,, 49.

These numbers are in A.P., such that a = 1, d = 2 - 1 = 1, n = 49

Let one of the houses be numbered as *x*

- \therefore Number of houses preceding it = x 1
- Number of houses following it = 49 x
- Now, the sum of the house-numbers preceding x is

$$S_{x-1} = \frac{x-1}{2} [2(1) + (x-1-1) \times 1]$$

= $\frac{x-1}{2} [2+x-2] = \frac{x(x-1)}{2} = \frac{x^2}{2} - \frac{x}{2}$

The houses beyond x are numbered as (x + 1), (x + 2), (x + 3),, 49

:. For these house numbers (which are in an A.P.) First term, a = x + 1Last term, l = 49

$$\therefore \quad \text{Using } S_n = \frac{n}{2}[a+l], \text{ we have}$$

$$S_{49-x} = \frac{49-x}{2}[(x+1)+49]$$

$$= \frac{49-x}{2}[x+50] = \frac{49x}{2} - \frac{x^2}{2} + (49 \times 25) - 25x$$

$$= \left(\frac{49x}{2} - 25x\right) - \frac{x^2}{2} + (49 \times 25) = \frac{-x}{2} - \frac{x^2}{2} + (49 \times 25)$$

Now, [Sum of house numbers preceding *x*] = [Sum of house numbers following *x*] *i.e.* $S_{x,1} = S_{49,x}$

$$\Rightarrow \frac{x^2}{2} - \frac{x}{2} = \frac{-x}{2} - \frac{x^2}{2} + (49 \times 25)$$

$$\Rightarrow \left(\frac{x^2}{2} + \frac{x^2}{2}\right) - \frac{x}{2} + \frac{x}{2} = (49 \times 25) \Rightarrow \frac{2x^2}{2} = (49 \times 25)$$

$$\Rightarrow x^2 = (49 \times 25) \Rightarrow x = \pm\sqrt{49 \times 25}$$

$$\Rightarrow x = \pm(7 \times 5) = \pm 35$$

- But *x* cannot be taken as negative.
- $\therefore x = 35.$
- 5. For 1^{st} step : Length = 50 m, Breadth = 1/2 m, Height = 1/4 m
- \therefore Volume of concrete required to build the 1st step
 - = Volume of the cuboidal step
 = Length × breadth × height

$$= 50 \times \frac{1}{2} \times \frac{1}{4} \text{ m}^3 = \frac{25}{4} \times 1 \text{ m}^3$$

For 2^{nd} **step :** Length = 50 m, Breadth = 1/2 m, Height

$$= \left(\frac{1}{4} + \frac{1}{4}\right)m = 2 \times \frac{1}{4}m$$

:. Volume of concrete required to build the 2nd step = $50 \times \frac{1}{2} \times \frac{1}{4} \times 2 \text{ m}^3 = \frac{25}{4} \times 2 \text{ m}^3$

For 3rd step : Length = 50 m, Breadth = 1/2 m, Height = $\left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right)$ m = 3 × $\frac{1}{4}$ m

 \therefore Volume of concrete required to build the 3rd step

$$= 50 \times \frac{1}{2} \times \frac{1}{4} \times 3 \text{ m}^{3} = \frac{25}{4} \times 3 \text{ m}^{3}$$

Thus, the volumes (in m³) of concrete required to build the various steps are :

.....

$$\left(\frac{25}{4} \times 1\right), \left(\frac{25}{4} \times 2\right), \left(\frac{25}{4} \times 3\right), \dots$$
 obviously, these

numbers form an A.P. such that a = 25/4

$$d = \frac{25}{2} - \frac{25}{4} = \frac{25}{4}$$

Here, total number of steps, n = 15

Total volume of concrete required to build 15 steps is given by the sum of their individual volumes.

On using
$$S_n = \frac{n}{2} [2a + (n-1)d]$$
, we have
 $S_{15} = \frac{15}{2} \left[2 \left(\frac{25}{4} \right) + (15-1) \times \frac{25}{4} \right]$
 $= \frac{15}{2} \left[\frac{25}{2} + 14 \times \frac{25}{4} \right] = \frac{15}{2} \left[\frac{25}{2} + \frac{175}{2} \right]$
 $= 15 \times 50 = 750 \text{ m}^3$
Thus, the required volume of concrete is 750 m³.

MtG BEST SELLING BOOKS FOR CLASS 10

X

10

10

10

10

Visit www.mtg.in for complete information