CHAPTER

Arithmetic Progressions

TRY YOURSELF

SOLUTIONS

(i) Given, list of numbers is 0.8, 1.3, 1.8, 2.3, 2.8, Here, we have, $a_2 - a_1 = 1.3 - 0.8 = 0.5$,

$$a_3 - a_2 = 1.8 - 1.3 = 0.5$$

$$a_4 - a_3 = 2.3 - 1.8 = 0.5,$$

$$a_5 - a_4 = 2.8 - 2.3 = 0.5, \dots$$

Since, a_{k+1} – a_k is same for different values of k, so the given list of numbers forms an A.P.

(ii) Given list of numbers is 15, 1, -13, -27, -41,

Here, we have, $a_2 - a_1 = 1 - 15 = -14$,

$$a_3 - a_2 = -13 - 1 = -14$$
,

$$a_4 - a_3 = -27 - (-13) = -14$$
,

$$a_5 - a_4 = -41 - (-27) = -14, \dots$$

Since, a_{k+1} – a_k is same for different values of k, so the given list of numbers forms an A.P.

(iii) Given list of numbers is $\sqrt{2}$, $\sqrt{4}$, $\sqrt{8}$, $\sqrt{16}$,

which can be written as $\sqrt{2}$, 2, $2\sqrt{2}$, 4,

Here, we have, $a_2 - a_1 = 2 - \sqrt{2}$,

$$a_3 - a_2 = 2\sqrt{2} - 2$$

$$a_4 - a_3 = 4 - 2\sqrt{2}$$
,...

Here, $a_2 - a_1 \neq a_3 - a_2 \neq a_4 - a_3$

- The given list of numbers does not form an A.P.
- (iv) Given list of numbers is $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{12}$, $\frac{1}{16}$.

Here, we have, $a_2 - a_1 = \frac{1}{8} - \frac{1}{4} = \frac{1-2}{8} = -\frac{1}{8}$,

$$a_3 - a_2 = \frac{1}{12} - \frac{1}{8} = \frac{2 - 3}{24} = -\frac{1}{24}$$

$$a_4 - a_3 = \frac{1}{16} - \frac{1}{12} = \frac{3 - 4}{48} = -\frac{1}{48}$$
,...

Here, $a_2 - a_1 \neq a_3 - a_2 \neq a_4 - a_3$

- The given list of numbers does not form an A.P.
- (i) Here, a = 17, d = 2.52.
- First term, $a = a_1 = 17$,

Second term, $a_2 = 17 + 2.5 = 19.5$,

Third term, $a_3 = 19.5 + 2.5 = 22$,

Fourth term, $a_4 = 22 + 2.5 = 24.5$ and

Fifth term, $a_5 = 24.5 + 2.5 = 27$

- (ii) Here, $a = \frac{1}{2}$, $d = -\frac{1}{4}$
- \therefore First term, $a = a_1 = \frac{1}{2}$

Second term, $a_2 = \frac{1}{2} + \left(-\frac{1}{4}\right) = \frac{2-1}{4} = \frac{1}{4}$

Third term, $a_3 = \frac{1}{4} + \left(-\frac{1}{4}\right) = 0$,

Fourth term, $a_4 = 0 - \frac{1}{4} = -\frac{1}{4}$ and

Fifth term, $a_5 = -\frac{1}{4} + \left(-\frac{1}{4}\right) = -\frac{1}{2}$

(iii) Here, a = -3, d = 0

Since d = 0

- Each term of given A.P. will be same as the first term of A.P.
- (iv) Here, a = -5, d = 6
- \therefore First term, $a = a_1 = -5$

Second term, $a_2 = -5 + 6 = 1$,

Third term, $a_3 = 1 + 6 = 7$,

Fourth term, $a_4 = 7 + 6 = 13$ and

Fifth term, $a_5 = 13 + 6 = 19$

Since 3k + 7, k + 19 and 2k + 1 are three consecutive terms of an A.P.

$$(k+19) - (3k+7) = (2k+1) - (k+19)$$

$$\Rightarrow$$
 $-2k + 12 = k - 18 \Rightarrow $3k = 30 \Rightarrow $k = 10$$$

(i) Given list of numbers is 9, 7, 5,

First term, a = 9

Common difference, $d = a_2 - a_1 = 7 - 9 = -2$

Fourth term, $a_4 = 5 + (-2) = 3$

and fifth term, $a_5 = 3 + (-2) = 1$

(ii) Given list of numbers is 18, 14, 10, 6, ...

First term, $a_1 = 18$

Common difference, $d = a_2 - a_1 = 14 - 18 = -4$

Fifth term, $a_5 = 6 + (-4) = 2$

and sixth term, $a_6 = 2 + (-4) = -2$

(iii) Given list of numbers is $\frac{1}{4}$, $\frac{7}{12}$, $\frac{11}{12}$, $\frac{15}{12}$,

First term, $a_1 = \frac{1}{4}$

Common difference, $d = a_2 - a_1 = \frac{7}{12} - \frac{1}{4} = \frac{7-3}{12} = \frac{4}{12} = \frac{1}{3}$

Fifth term, $a_5 = \frac{15}{12} + \frac{1}{3} = \frac{19}{12}$

Sixth term, $a_6 = \frac{19}{12} + \frac{1}{3} = \frac{23}{12}$

(iv) Given list of numbers is $(a - b)^2$, $(a^2 + b^2)$, $(a + b)^2$, ... First term, $a_1 = (a - b)^2$

Common difference, $d = a_2 - a_1 = (a^2 + b^2) - (a - b)^2$

$$= a^2 + b^2 - (a^2 + b^2 - 2ab) = 2ab$$

Fourth term, $a_4 = (a + b)^2 + (2ab)$

$$= a^2 + b^2 + 2ab + 2ab = a^2 + b^2 + 4ab$$

Fifth term, $a_5 = (a - b)^2 + 4(2ab) = a^2 + b^2 + 6ab$

5. (i) Let the first term be *a* and *d* be the common difference of the given A.P.

Given,
$$a_2 = 179 \implies a + d = 179$$
 ...(i)
Also, $a_3 = 176 \implies a + 2d = 176$...(ii)

Subtracting (i) from (ii), we get d = -3

From (i), a = 179 + 3 = 182

Also,
$$a_4 = a + 3d = 182 + 3(-3) = 182 - 9 = 173$$

- :. Missing terms are 182 and 173.
- (ii) Given, $a_1 = 8$, $a_2 = 15$

First term, a = 8,

common difference, $d = a_2 - a_1 = 15 - 8 = 7$

- $a_3 = a + 2d = 8 + 2(7) = 22 \text{ and}$ $a_4 = a + 3d = 8 + 3(7) = 29$
- :. Missing terms are 22 and 29.
- (iii) Let a be the first term and d be the common difference.

Given,
$$a_3 = 0.78 \implies a + 2d = 0.78$$
 ...(i)

Also,
$$a_4 = 1.01 \implies a + 3d = 1.01$$
 ...(ii)

Subtracting (i) from (ii), we get d = 0.23

From (i), a + 2(0.23) = 0.78

$$\Rightarrow$$
 $a = 0.78 - 0.46 = 0.32$

$$a_2 = a + d = 0.32 + 0.23 = 0.55$$

- :. Missing terms are 0.32 and 0.55.
- (iv) Let *a* be the first term and *d* be the common difference.

Given,
$$a_2 = -8 \implies a + d = -8$$
 ... (i

Also,
$$a_4 = -28 \implies a + 3d = -28$$
 ... (i

Subtracting (i) from (ii), we get

$$2d = -28 + 8 \implies 2d = -20 \implies d = -10$$

From (i), $a + (-10) = -8 \implies a = 2$

Now,
$$a_3 = a + 2d = 2 + 2(-10) = 2 - 20 = -18$$

- ∴ Missing terms are 2 and -18.
- **6.** Given, first term, a = 3

Common difference, d = 5

Now,
$$a_{17} = a + 16d$$
 [: $a_n = a + (n-1)d$]

$$= 3 + 16(5) = 83$$

And $a_{25} = a + 24d$

$$= 3 + 24(5) = 3 + 120 = 123$$

7. Given A.P. is 8, 6.5, 5, 3.5,, -55

Here a = 8, d = 6.5 - 8 = -1.5

Let the number of terms be n.

$$\therefore$$
 $a_n = -55$ (last term) $\Rightarrow a + (n-1)d = -55$

$$\Rightarrow$$
 8 + (n - 1)(-1.5) = -55 \Rightarrow (n - 1)(-1.5) = -55 - 8

$$\Rightarrow$$
 $(n-1)(-1.5) = -63$

$$\Rightarrow$$
 $(n-1) = \frac{63}{1.5} = 42 \Rightarrow n = 42 + 1 = 43$

- :. The number of terms in the given A.P. is 43.
- **8.** All natural numbers between 100 and 500, which are divisible by 8 are

104, 112, 120, 128,, 496, which is an A.P.

Here, first term a = 104,

common difference, d = 112 - 104 = 8

Now,
$$a_n = a + (n - 1)d$$

$$\Rightarrow$$
 496 = 104 + (n - 1)8

$$\Rightarrow$$
 496 - 104 = $(n-1)8$ \Rightarrow 392 = $(n-1)8$

$$\Rightarrow (n-1) = \frac{392}{8} \Rightarrow n = 49 + 1 = 50$$

- ∴ Total numbers are 50.
- **9.** Given, $a_{21} = 46$

$$\Rightarrow a + (21 - 1)d = 46$$

$$[\because a_n = a + (n-1)d]$$

$$\Rightarrow$$
 $a + 20d = 46$

Also,
$$a_{36} = 70 \implies a + (36 - 1)d = 70$$

$$\Rightarrow a + 35d = 70$$
 .. (ii)

Subtracting (i) from (ii), we get

$$15d = 24 \implies d = \frac{24}{15} = \frac{8}{5}$$

From (i),
$$a = 46 - 20 \left(\frac{8}{5} \right) = 14$$

$$\therefore a_{28} = a + (28 - 1)d = 14 + 27\left(\frac{8}{5}\right) = \frac{70 + 216}{5} = \frac{286}{5}$$

10. Given, first A.P. is 5, 8, 11,

Here, first term a = 5

common difference, d = 8 - 5 = 3

Now, tenth term, $a_{10} = a + (10 - 1)d = 5 + 9(3) = 32$... (i)

Also, second A.P. is 2, 8, 14,

Here, first term a = 2, common difference, d = 8 - 2 = 6

So, tenth term,
$$b_{10} = 2 + 9(6) = 56$$
 ... (ii

$$\therefore \frac{a_{10}}{b_{10}} = \frac{32}{56} = \frac{4}{7}$$
 [Using (i) and (ii)]

11. Given,
$$\frac{a_{18}}{a_{11}} = \frac{3}{2} \implies \frac{a+17d}{a+10d} = \frac{3}{2}$$

$$\Rightarrow$$
 2a + 34d = 3a + 30d \Rightarrow a = 4d ... (i)

Now,
$$\frac{a_{21}}{a_5} = \frac{a + 20d}{a + 4d} = \frac{4d + 20d}{4d + 4d}$$
 [Using (i)]
= $\frac{24d}{8d} = \frac{3}{1}$

- \therefore Required ratio = 3:1
- **12.** Income (in ₹) of Rajat for some years is 100000, 105000, 110000..., 150000, which forms an A.P.

Let there be n terms in the A.P.

Here, a = 100000, d = 105000 - 100000 = 5000

and $a_n = 150000$

We know that, $a_n = a + (n - 1)d$

$$\therefore$$
 150000 = 100000 + $(n-1)$ 5000

$$\Rightarrow$$
 5000 $(n-1) = 150000 - 100000 \Rightarrow 5000(n-1) = 50000$

$$\Rightarrow n-1 = \frac{50000}{5000} = 10 \Rightarrow n = 10 + 1 = 11$$

Hence, in 11th year his income will reach ₹150000.

13. Given A.P. is 7, 10.5, 14, ..., 213.5

Here, last term, l = 213.5

Common difference, d = 10.5 - 7 = 3.5

 \therefore 19th term from the end = l - 18d

[:
$$n^{\text{th}}$$
 term from the end = $l - (n-1)d$] = 213.5 - 18(3.5) = 213.5 - 63 = 150.5

14. Given, A.P. is 17, 14, 11,, -40

On reversing the given A.P., new A.P. is

Here, first term, a = -40

Common difference, d = 3

Now, 6^{th} term of new A.P. = $a_6 = a + 5d$ = -40 + 5(3) = -40 + 15 = -25

Hence, 6th term from the end of the given A.P. is -25.

15. Given,
$$a = 10$$
, $d = 5$, $n = 100$

$$\begin{array}{ll} \therefore & a_{100} = a + (100 - 1)d \\ & = 10 + 99(5) = 505 \end{array} \qquad \left[\because a_n = a + (n - 1)d \right]$$

$$l = 505$$

Also, 50^{th} term from the end = l - (n - 1)d= 505 - (50 - 1)5 = 505 - (49)5

$$= 505 - 245 = 260$$

16. Given A.P. is 771, 777, ..., 915

Here,
$$a = 771$$
, $d = 777 - 771 = 6$

Let there be n terms in the given A.P.

Then,
$$a_n = 915 \implies a + (n-1)d = 915$$

$$\Rightarrow$$
 771 + $(n-1)6 = 915$

$$\Rightarrow$$
 $(n-1)6 = 144 \Rightarrow $(n-1) = 24 \Rightarrow $n = 25$$$

Here, *n* is odd, so
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 i.e., $\left(\frac{25+1}{2}\right)^{\text{th}}$ = 13th term

is the middle term and is given by

$$a_{13} = a + 12d = 771 + 12(6) = 843$$

17. Given, A.P. is 4, 9, 14,, 254

Here, a = 4, d = 9 - 4 = 5

Let there be *n* terms in the given A.P.

Then,
$$a_n = 254 \implies a + (n-1)d = 254$$

$$\Rightarrow$$
 4 + (n - 1)5 = 254 \Rightarrow (n - 1)5 = 250

$$\Rightarrow$$
 $(n-1) = 50 \Rightarrow n = 51$, which is odd.

So,
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 i.e., $\left(\frac{51+1}{2}\right)^{\text{th}} = 26^{\text{th}}$ term

is the middle term and is given by

$$a_{26} = a + 25d = 4 + 25(5) = 129$$

18. Given, first term, a = 5, common difference, d = 3 and last term, l = 80

Let there be *n* terms, then $a_n = l = 80$

$$\Rightarrow$$
 $a + (n-1)d = 80 $\Rightarrow 5 + (n-1)3 = 80$$

$$\Rightarrow (n-1)3 = 75 \Rightarrow (n-1) = 25 \Rightarrow n = 26$$

Clearly, *n* is even, so
$$\left(\frac{n}{2}\right)^{\text{th}}$$
 i.e., 13^{th} and $\left(\frac{n}{2}+1\right)^{\text{th}}$

i.e., 14th terms are middle terms and are given by

$$a_{13} = a + 12d = 5 + 12(3) = 41$$

$$a_{14} = a + 13d = 5 + 13(3) = 44$$

19. The natural numbers which leave remainder 2 when divided by 5 lying between 100 and 200 are 102, 107, 112, 117, 122,, 197.

Which is an A.P.

Here, first term, a = 102 and common difference, d = 107 - 102 = 5

Let n be the number of terms of the A.P.

$$\therefore \quad a_n = 197 \implies a + (n-1)d = 197$$

$$\Rightarrow$$
 102 + (n - 1)5 = 197 \Rightarrow (n - 1)5 = 95

$$\Rightarrow$$
 $(n-1) = 19 \Rightarrow n = 20$

Now,
$$S_{20} = \frac{20}{2} [2(102) + (20 - 1)5]$$

$$= 10[204 + 95] = 10[299] = 2990$$

Thus, the required sum is 2990.

20. Given,
$$a = 7$$
 and $S_{20} = -240$

$$\Rightarrow \frac{20}{2}(2 \times 7 + 19d) = -240 \quad \left[:: S_n = \frac{n}{2}(2a + (n-1)d) \right]$$

$$\Rightarrow$$
 10(14 + 19*d*) = -240

$$\Rightarrow$$
 19 $d = -24 - 14 \Rightarrow d = -2$

$$\therefore a_{24} = a + 23d = 7 + 23(-2) = 7 - 46 = -39$$

21. Multiples of 9 between 400 and 800 are 405, 414, 423,..., 792

Clearly, it forms an A.P. with a = 405, d = 9 and last town d = 702

last term, *l* = 792

$$\Rightarrow$$
 $a + (n-1)d = 792 \Rightarrow 405 + 9n - 9 = 792$

$$\Rightarrow$$
 9n = 792 - 396 = 396 \Rightarrow n = 44

Thus,
$$S_{44} = \frac{44}{2}(405 + 792)$$
 [: $S_n = \frac{n}{2}(a+l)$]
= 22 × 1197 = 26334.

22. Let *a* be the first term and *d* be the common difference of the required A.P.

$$S_{10} = \frac{10}{2} [2a + 9d]$$
 $\left[: S_n = \frac{n}{2} [2a + (n-1)d] \right]$

$$\Rightarrow$$
 725 = 5(2a + 9d) \Rightarrow 145 = 2a + 9d ... (i)

Now, sum of next 10 terms = S_{20} – S_{10}

$$\Rightarrow$$
 1225 = S_{20} - S_{10}

$$\Rightarrow 1225 = \left[\frac{20}{2}(2a+19d)\right] - 725$$

$$\Rightarrow$$
 1950 = 10(2a + 19d) \Rightarrow 2a + 19d = 195 ... (ii)

Subtracting (i) from (ii), we get

$$10d = 50 \implies d = 5$$

From (i), 145 = 2a + 9(5)

$$\Rightarrow$$
 100 = 2a \Rightarrow a = 50

23. Given A.P. is 7, 4, 1, -2, ...

Here, a = 7, d = 4 - 7 = -3

Let there be n terms.

Since,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow$$
 -333 = $\frac{n}{2}[2(7) + (n-1)(-3)]$ [Given, $S_n = -333$]

$$\Rightarrow$$
 -666 = $n(14 - 3n + 3)$ \Rightarrow -666 = $n(17 - 3n)$

$$\Rightarrow 3n^2 - 17n - 666 = 0$$

$$\Rightarrow n = \frac{17 \pm \sqrt{(17)^2 - 4(3)(-666)}}{2(3)}$$

$$\Rightarrow n = \frac{17 \pm \sqrt{289 + 7992}}{6} = \frac{17 \pm \sqrt{8281}}{6} = \frac{17 \pm 91}{6}$$

$$\Rightarrow n=18, \frac{-74}{6}$$

As, n can't be negative.

∴ Required number of terms is 18.

24. Let the three terms of an A.P. be (a - d), a and (a + d).

: Sum of these terms is 36.

$$\Rightarrow$$
 3a = 36 \Rightarrow a = 12

Also, product of these three terms is 960.

$$\Rightarrow$$
 $(a + d) a (a - d) = 960 \Rightarrow $(12 + d) 12(12 - d) = 960$$

$$\Rightarrow$$
 $(12 + d)(12 - d) = 80$

$$\Rightarrow 144 - d^2 = 80 \Rightarrow d^2 = 64 \Rightarrow d = \pm 8$$

Taking $d \pm 8$, we get the terms as 4, 12 and 20.

25. Let the four parts be

$$(a-3d)$$
, $(a-d)$, $(a+d)$ and $(a+3d)$.

The sum of these four parts is 124.

$$\Rightarrow$$
 4a = 124 \Rightarrow a = 31

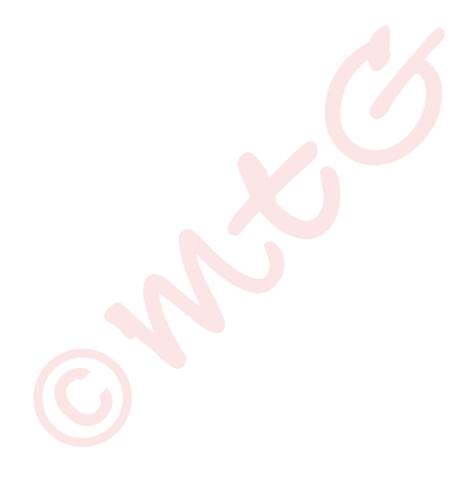
Also,
$$(a - 3d)(a + 3d) = (a - d)(a + d) - 128$$
 (Given)

$$\Rightarrow a^2 - 9d^2 = a^2 - d^2 - 128$$

$$\Rightarrow$$
 $8d^2 = 128 \Rightarrow d = \pm 4$

As,
$$a = 31$$
, taking $d = 4$, the four parts are 19, 27, 35 and 43.

Note : If *d* is taken as –4, then the same four numbers are obtained, but in decreasing order.



MtG BEST SELLING BOOKS FOR CLASS 10

