Post-Mid Term

SOLUTIONS

(b): Let *r* be the radius, *h* be the height and *l* be the slant height of right circular cone.

Now, h = 15 cm, Diameter = 16 cm

[Given]

$$\therefore r = \frac{16}{2} = 8 \text{ cm}$$

Also,
$$l = \sqrt{r^2 + h^2} = \sqrt{8^2 + 15^2} = \sqrt{289} = 17 \text{ cm}$$

- Curved surface area of the cone = πrl $= \pi \times 8 \times 17 = 136\pi \text{ cm}^2$
- (d): Total number of cards = 52

Number of ace cards = 4

Number of favourable outcomes = 52 - 4 = 48

(Non ace cards)

- $P(\text{not an ace card}) = \frac{48}{52} = \frac{12}{12}$
- (d): We know that mean, $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$

$$\Rightarrow$$
 8.1 = $\frac{132 + 5k}{20}$ [$\Sigma f_i x_i = 132 + 5k, \Sigma f_i = 20$ (Given)]

$$\Rightarrow$$
 132 + 5 k = 162 \Rightarrow 5 k = 30 \Rightarrow k = 6

4. We have,
$$p(x) = x^2 - p(x+1) - c = x^2 - px - p - c$$

$$\therefore \quad \alpha + \beta = p \text{ and } \alpha\beta = (-p - c)$$

Now, $(\alpha + 1)(\beta + 1) = 0$

Now,
$$(\alpha + 1)(\beta + 1) = 0$$
 [Given]
 $\Rightarrow \alpha\beta + \alpha + \beta + 1 = 0 \Rightarrow -p - c + p + 1 = 0 \Rightarrow c = 1$

 $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$

$$= 2(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = 2$$

Given, area of sector $OAPB = \frac{5}{12} \times Area$ of circle

$$\Rightarrow \frac{x}{360^{\circ}} \times \pi r^2 = \frac{5}{12} \times \pi r^2 \Rightarrow x = 150^{\circ}$$

We have, $3\sqrt{3}x^2 + 10x + \sqrt{3} = 0$

Here, $a = 3\sqrt{3}$, b = 10 and $c = \sqrt{3}$

.. Discriminant (D) =
$$b^2 - 4ac = 10^2 - 4(3\sqrt{3})(\sqrt{3})$$

= $100 - 36 = 64$

- Prime numbers which are less than 20 and starting from 2 are 2, 3, 5, 7, 11, 13, 17 and 19 i.e., 8 in number.
- Number of favourable outcomes = 8

Total number of cards from 2 to 101 = 100

- Total number of possible outcomes = 100
- *P*(number on card is a prime number less than 20) $=\frac{8}{100}=\frac{2}{25}$

9. In
$$\triangle ABC$$
, $\frac{AP}{AB} = \frac{3}{5}$...(i)

and
$$\frac{AQ}{AC} = \frac{6}{10} = \frac{3}{5}$$
 ...(ii)

From (i) and (ii), we get
$$\frac{AP}{AB} = \frac{AQ}{AC} \Rightarrow PQ \parallel BC$$

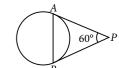
(By converse of Thales theorem)

In $\triangle ABD$, $PR \parallel BD$

$$\Rightarrow \frac{AP}{AB} = \frac{AR}{AD}$$
 (By Thales theorem)

$$\Rightarrow \frac{3}{5} = \frac{4.5}{AD} \Rightarrow AD = \frac{4.5 \times 5}{3} = 7.5 \text{ cm}$$

10. Tangents from an external point to a circle are equal in length. Therefore,



$$PA = PB \implies \Delta PAB$$
 is isosceles

$$\Rightarrow \angle PAB = \angle PBA$$

In
$$\triangle APB$$
, $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$

$$\Rightarrow$$
 2 $\angle PAB = 180^{\circ} - 60^{\circ} = 120^{\circ} \Rightarrow \angle PAB = 60^{\circ}$

 $\Rightarrow \Delta PAB$ is an equilateral triangle.

Hence, AB = 12 cm.

11. Let the three parts which are in A.P. = a - d, a, a + d. Now, sum of three parts = 69

$$\Rightarrow$$
 $(a-d) + (a) + (a+d) = 69$

$$\Rightarrow$$
 3a = 69

$$\Rightarrow a = 23$$

Also, the product of two smaller parts = 483(Given)

$$\Rightarrow (a - \hat{d}) \times a = 483 \qquad ...(i)$$

Substituting a = 23 in (i), we get

$$(23 - d) \times 23 = 483$$

$$\Rightarrow$$
 23 - d = $\frac{483}{23}$ = 21 \Rightarrow d = 23 - 21 = 2

Hence, the three parts of 69 are 21, 23, 25.

12.

No. of Accidents (x_i)	Frequency (f _i)	$f_i x_i$
0	46	0
1	x	x
2	у	2 <i>y</i>
3	25	75
4	10	40
5	5	25
	$\Sigma f_i = 86 + x + y = 200$	$\Sigma f_i x_i = 140 + x + 2y$

Now, mean = 1.46 (Given)

$$\Rightarrow 1.46 = \frac{140 + x + 2y}{200}$$

$$\Rightarrow$$
 292 = 140 + x + 2 y

$$\Rightarrow x + 2y = 152$$
 ...(i)
Also, $86 + x + y = 200 \Rightarrow x + y = 114$...(ii)

Also, $86 + x + y = 200 \Rightarrow x + y = 114$ Solving (i) and (ii), we get x = 76, y = 38.

13. Join *OP*. Draw $BQ \perp OP$, $OR \perp AH$ and $OS \perp BK$ produced BK to S.

In $\triangle ARO$ and $\triangle OQB$, OA = OB

[Radii of the same circle]

 $\angle AOR = \angle OBQ$ [Corresponding angles as RS || QB]

$$\therefore 180^{\circ} - \angle ARO - \angle AOR = 180^{\circ} - \angle OQB - \angle OBQ$$

[By angle sum property]

$$\Rightarrow \angle OAR = \angle BOQ$$

$$\therefore$$
 $\triangle ARO \cong \triangle OQB$

[By AAS congruence criterion]

$$\Rightarrow AR = OQ$$
 [By CPCT]

Let
$$AR = OQ = x$$

Now,
$$AH + BK = (x + RH) + (SK - x)$$

$$= x + OP + OP - x \qquad [\because RH = SK = OP]$$

$$= 2OP = 2OA$$
 [: $OP = OA = \text{Radius}$]
= AB : $AH + BK = AB$

$$= AB$$
 ::

14. Clearly, one round of wire covers 4 mm
$$\left(=\frac{4}{10}$$
 cm $\right)$

of the surface of the cylinder and length of the cylinder is 24 cm.

... Number of rounds to cover 24 cm =
$$\frac{24}{4/10}$$
 = 60
Diameter of the cylinder = 20 cm

Radius of the cylinder, r = 10 cm

Length of wire required in completing one round = $2\pi r$ $= (2\pi \times 10) \text{ cm} = 20 \pi \text{ cm}.$

: Length of wire required in covering the whole surface = Length of wire required in completing 60

$$= (20 \pi \times 60) \text{ cm} = 1200 \pi \text{ cm}.$$

Radius of copper wire = 2 mm = $\frac{2}{10}$ cm

$$\therefore \text{ Volume of wire} = \left(\pi \times \frac{2}{10} \times \frac{2}{10} \times 1200\pi\right) \text{cm}^3 = 48\pi^2 \text{cm}^3$$

So, weight of wire = $(48\pi^2 \times 8.88)$ gm = $426.24 \pi^2$ gm

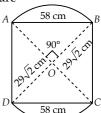
The length of each side of a square lawn is 58 cm.

$$=58\sqrt{2} \text{ cm}$$

Radius of the circle = $29\sqrt{2}$ cm.

Let A be the area of one of the circular ends. Then,

A =Area of a segment of angle 90° in a circle of radius $29\sqrt{2}$ cm.



$$\Rightarrow A = \left\{ \frac{22}{7} \times \frac{90^{\circ}}{360^{\circ}} - \sin 45^{\circ} \cos 45^{\circ} \right\} \times (29\sqrt{2})^{2} \text{ cm}^{2}$$

$$\therefore \text{ Area of minor segment} = \left\{ \frac{\pi \theta}{360} - \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right\} r^{2}$$

$$\Rightarrow A = \left(\frac{11}{14} - \frac{1}{2}\right) \times 29 \times 29 \times 2 \text{ cm}^2 = \frac{3364}{7} \text{ cm}^2$$

Area of the whole lawn = Area of the square + 2 (Area of a circular end)

$$= \left\{ 58 \times 58 + 2 \times \frac{3364}{7} \right\} \text{ cm}^2 = \left\{ 3364 + 2 \times \frac{3364}{7} \right\} \text{ cm}^2$$
$$= 3364 \left(1 + \frac{2}{7} \right) \text{ cm}^2 = 3364 \times \frac{9}{7} \text{ cm}^2 = 4325.14 \text{ cm}^2$$

MtG BEST SELLING BOOKS FOR CLASS 10

