Pre-Mid Term

SOLUTIONS

1. (c): $95 = 5 \times 19$ and $152 = 2 \times 2 \times 2 \times 19$

∴ HCF (95, 152) = 19

2. (b): Since, α and β are the zeroes of $f(x) = x^2 + x + 1$

 \therefore $\alpha + \beta = -1$ and $\alpha\beta = 1$

Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-1}{1} = -1$

3. (d): Since, 1 is a root of the equation $ay^2 + ay + 3 = 0$

 $a(1)^2 + a(1) + 3 = 0$

 \Rightarrow $2a = -3 \Rightarrow a = \frac{-3}{2}$

4. Common difference, $d = a_2 - a_1 = \frac{1 - 6b}{2b} - \frac{1}{2b}$

 $=\frac{1-6b-1}{2h}=\frac{-6b}{2h}=-3$

5. $144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 2^4 \times 3^2$

 \therefore Exponent of 2 in the prime factorisation of 144 = 4

6. Let two consecutive positive integers be x and x + 1. It is given that the product of two consecutive positive integers is 240.

 \therefore $x(x+1) = 240 \Rightarrow x^2 + x - 240 = 0$, which is the required quadratic equation.

7. y = 0 and y = -5 are parallel lines, hence they have no common solution.

8. Let first term = a and common difference = d.

According to the question, $5 \times a_5 = 10 \times a_{10}$

 \Rightarrow 5(a + 4d) = 10(a + 9d)

 \Rightarrow 5a + 20d = 10a + 90d \Rightarrow a = -14d

Now, $a_{15} = a + 14d \Rightarrow a_{15} = -14d + 14d = 0$

9. $576 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$

 $448 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7$

 \therefore HCF of 576 and 448 = 64

:. Number of sections = $\frac{576}{64} + \frac{448}{64} = 9 + 7 = 16$

10. We have, $2ax^2 - (2a - p^2)x - p^2 = 0$

 $\Rightarrow 2qx^2 - 2qx + p^2x - p^2 = 0$

 \Rightarrow 2qx (x - 1) + p²(x - 1) = 0

 $\Rightarrow (2qx + p^2)(x - 1) = 0$

 \Rightarrow $(2qx + p^2) = 0$ or (x - 1) = 0

 $\Rightarrow x = -\frac{p^2}{2a} \text{ or } x = 1$

11. We have, $x + \frac{6}{y} = 6$...(i)

 $3x - \frac{8}{y} = 5 \qquad \dots (ii)$

Multiplying (i) by 3, we get

 $3x + \frac{18}{y} = 18$...(iii)

Subtracting (ii) from (iii), we get

 $\frac{1}{y}(18+8) = 13$ $\Rightarrow \frac{26}{y} = 13$ $\Rightarrow y = \frac{26}{13} = 2$

Putting y = 2 in (i), we get

 $x + \frac{6}{2} = 6 \implies x + 3 = 6 \implies x = 6 - 3 = 3$

Hence, x = 3 and y = 2.

12. Let a =first term and d =common difference

Now, $a_{12} = a + (12 - 1)d$ $[\because a_n = a + (n - 1)d]$

 \Rightarrow -13 = a + 11d [Given, a_{12} = -13] ...(i

Also, $S_4 = \frac{4}{2}[2a + (4-1)d]$

 \Rightarrow 24 = 2(2a + 3d) [Given, S_4 = 24]

 $\Rightarrow 2a + 3d = 12 \qquad \dots (i)$

Multiplying (i) by 2 and subtracting from (ii), we get $3d - 22d = 12 - (-26) \Rightarrow -19d = 38 \Rightarrow d = -2$

Putting the value of *d* in (i), we get

 $a = -13 - 11d = -13 - 11 \times (-2) = -13 + 22 = 9$

 $\therefore S_{10} = \frac{10}{2} [2a + (10 - 1)d]$

 $= 5 [2 \times 9 + 9 \times (-2)] = 5 (18 - 18) = 0$

13. Let $\sqrt{3}$ be a rational number.

 \therefore $\sqrt{3} = \frac{a}{b}$, where a and b are co-prime integers, $b \neq 0$.

Squaring both sides, we get $3 = \frac{a^2}{b^2}$.

Multiplying with *b* on both sides, we get $3b = \frac{a^2}{h}$

Now, LHS = $3 \times b$ = Integer

and RHS = $\frac{a^2}{b} = \frac{\text{Integer}}{\text{Integer}} = \text{Rational number}$

Since, LHS ≠ RHS

:. Our supposition is wrong.

 $\Rightarrow \sqrt{3}$ is an irrational number.

Let $15+17\sqrt{3}$ be a rational number

$$\therefore 15 + 17\sqrt{3} = \frac{a}{h}$$

$$\Rightarrow$$
 $17\sqrt{3} = \frac{a}{h} - 15$

$$\Rightarrow \sqrt{3} = \frac{a - 15b}{17b}$$
, which is a contradiction because $\sqrt{3}$

is an irrational number and $\frac{a-15b}{17b}$ is a rational number.

Our supposition is wrong and hence $15 + 17\sqrt{3}$ is

14. Let denominator of a fraction = x

$$\Rightarrow$$
 Numerator = $x - 2$

$$\therefore \text{ Original fraction} = \frac{x-2}{x} \qquad \dots (i)$$

On adding 1 to numerator as well as denominator, the

fraction becomes $\frac{x-2+1}{x+1}$ *i.e.*, $\frac{x-1}{x+1}$.

According to question

$$\frac{x-2}{x} + \frac{x-1}{x+1} = \frac{19}{15} \implies \frac{(x-2)(x+1) + x(x-1)}{x(x+1)} = \frac{19}{15}$$

$$\Rightarrow \frac{x^2 - 2x + x - 2 + x^2 - x}{x^2 + x} = \frac{19}{15}$$

$$\Rightarrow \frac{2x^2 - 2x - 2}{x^2 + x} = \frac{19}{15}$$

$$\Rightarrow 30x^2 - 30x - 30 = 19x^2 + 19x$$

$$\Rightarrow 30x^2 - 30x - 30 = 19x^2 + 19x$$

\Rightarrow 11x^2 - 49x - 30 = 0 \Rightarrow 11x^2 - 55x + 6x - 30 = 0

$$\Rightarrow$$
 11x(x - 5) + 6(x - 5) = 0 \Rightarrow (x - 5)(11x + 6) = 0

$$\Rightarrow x = 5, -\frac{6}{11}$$

 \therefore x = 5 (Rejecting fractional value)

Thus, original fraction = $\frac{5-2}{5} = \frac{3}{5}$.

15.
$$2x^2 + 12\sqrt{2}x + 35 = 2x^2 + 7\sqrt{2}x + 5\sqrt{2}x + 35$$

$$= \sqrt{2} x \left[\sqrt{2} x + 7 \right] + 5 \left[\sqrt{2} x + 7 \right]$$

$$= [\sqrt{2}x + 7][\sqrt{2}x + 5]$$

 \therefore Zeroes are $\frac{-5}{\sqrt{2}}$, $\frac{-7}{\sqrt{2}}$. So zeroes of other polynomial

are
$$\frac{-10}{\sqrt{2}}$$
, $\frac{-14}{\sqrt{2}}$

Sum of zeroes = $\frac{-24}{\sqrt{2}}$ and product = $\frac{140}{2}$ = 70

 \therefore New polynomial is x^2 – (sum) x + product

$$= x^2 + \frac{24}{\sqrt{2}}x + 70 \ i.e., \sqrt{2}x^2 + 24x + 70\sqrt{2}$$

MtG BEST SELLING BOOKS FOR CLASS 10

