Three Dimensional Geometry SOLUTIONS

EXAM
Drilu

1. (a) : $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow \quad \frac{196}{225}+\frac{1}{9}+\cos ^{2} \gamma=1$
$\Rightarrow \quad \cos ^{2} \gamma=1-\frac{221}{225}=\frac{4}{225} \Rightarrow \cos \gamma= \pm \frac{2}{15}$
2. (b) : Direction ratios of the given lines are $(1,3,2 \lambda)$ and $(-3,5,2)$ respectively. The lines are at right angles. So, $(1) \times(-3)+(3) \times(5)+2(2 \lambda)=0$
$\Rightarrow-3+15+4 \lambda=0 \Rightarrow \lambda=-3$
3. (a): Given equation of lines are
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$
and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$
On comparing with $\vec{r}=\vec{a}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, we get $\vec{b}_{1}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}_{2}=3 \hat{i}+2 \hat{j}+6 \hat{k}$
The acute angle θ between the two lines is given by
$\cos \theta=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|=\left|\frac{(\hat{i}+2 \hat{j}+2 \hat{k}) \cdot(3 \hat{i}+2 \hat{j}+6 \hat{k})}{\sqrt{(1)^{2}+(2)^{2}+(2)^{2}} \sqrt{(3)^{2}+(2)^{2}+(6)^{2}}}\right|$
$=\left|\frac{(1)(3)+(2)(2)+(2)(6)}{\sqrt{1+4+4} \sqrt{9+4+36}}\right|=\left|\frac{3+4+12}{\sqrt{9} \sqrt{49}}\right|=\frac{19}{3 \times 7}=\frac{19}{21}$
$\therefore \quad \theta=\cos ^{-1}\left(\frac{19}{21}\right)$
4. The given equation can be written as
$\frac{x-2}{3}=\frac{y+1 / 2}{1}=\frac{z-5}{-1}$.
Direction ratios of this line are $3,1,-1$. So, the direction ratios of the parallel line are proportional to $3,1,-1$.
The required line passes through $(1,-1,0)$ and its direction ratios are proportional to $3,1,-1$. So, its equation is
$\frac{x-1}{3}=\frac{y+1}{1}=\frac{z-0}{-1}$.
5. Given equation of line is $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$
$\Rightarrow \frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3} \Rightarrow \frac{x-4}{2}=\frac{y}{-6}=\frac{z-1}{3}$
As $\sqrt{2^{2}+(-6)^{2}+3^{2}}=7$
$\therefore \quad$ D.c's. of (i) are $\frac{2}{7}, \frac{-6}{7}, \frac{3}{7}$.
6. Drs of line $=\langle 10,-4,-11\rangle$
$\therefore \quad$ Dcs of line $=\left\langle\frac{10}{\sqrt{237}}, \frac{-4}{\sqrt{237}}, \frac{-11}{\sqrt{237}}\right\rangle$
7. Direction ratios of line joining A and B are
$1-2,-2-3,3+4$ i.e., $-1,-5,7$.
The direction ratios of line joining B and C are
$3-1,8+2,-11-3$, i.e., $2,10,-14$.
It is clear that direction ratios of $A B$ and $B C$ are proportional, hence $A B$ is parallel to $B C$. But, point B is common to both $A B$ and $B C$. Therefore, A, B, C are collinear points.
8. Let \vec{a} and \vec{b} be the position vectors of the points $A(-1,0,2)$ and $B(3,4,6)$.
Then, $\vec{a}=-\hat{i}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+4 \hat{j}+6 \hat{k}$
Therefore, $\vec{b}-\vec{a}=4 \hat{i}+4 \hat{j}+4 \hat{k}$
Let \vec{r} be the position vector of any point on the line.
Then the vector equation of the line is
$\vec{r}=-\hat{i}+2 \hat{k}+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})$
9. The given lines are

$$
\begin{aligned}
& l_{1}: \frac{x-0}{1}=\frac{y-0}{-1}=\frac{z-0}{\frac{1}{k}} \\
& l_{2}: \frac{x-2}{1}=\frac{y+\frac{1}{2}}{\frac{1}{2}}=\frac{z-1}{-1}
\end{aligned}
$$

$\because \quad l_{1}$ is perpendicular to l_{2}
$\therefore 1(1)+(-1)\left(\frac{1}{2}\right)+\left(\frac{1}{k}\right)(-1)=0$
$\Rightarrow 1-\frac{1}{2}-\frac{1}{k}=0 \Rightarrow \frac{1}{2}=\frac{1}{k} \Rightarrow k=2$
10. (i) (b) : The line along which motorcycle A is running, is $\vec{r}=\lambda(\hat{i}+2 \hat{j}-\hat{k})$, which can be rewritten as
$(x \hat{i}+y \hat{j}+z \hat{k})=\lambda \hat{i}+2 \lambda \hat{j}-\lambda \hat{k}$
$\Rightarrow x=\lambda, y=2 \lambda, z=-\lambda \Rightarrow \frac{x}{1}=\lambda, \frac{y}{2}=\lambda, \frac{z}{-1}=\lambda$
Thus, the required cartesian equation is $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}$
(ii) (d) : Clearly, d.r.'s of the required line are
<1, 2, $-1>$
$\therefore \quad$ D.C.'s are
$<\frac{1}{\sqrt{1^{2}+2^{2}+(-1)^{2}}}, \frac{2}{\sqrt{1^{2}+2^{2}+(-1)^{2}}}, \frac{-1}{\sqrt{1^{2}+2^{2}+(-1)^{2}}}>$ i.e., $\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}>\right.$
(iii) (d) : The line along which motorcycle B is running, is $\vec{r}=(3 \hat{i}+3 \hat{j})+\mu(2 \hat{i}+\hat{j}+\hat{k})$, which is parallel to the vector $2 \hat{i}+\hat{j}+\hat{k}$.
$\therefore \quad$ D.R.'s of the required line are $<2,1,1>$.
(iv) (d): Here, $\vec{a}_{1}=0 \hat{i}+0 \hat{j}+0 \hat{k}, \vec{a}_{2}=3 \hat{i}+3 \hat{j}$,

$$
\vec{b}_{1}=\hat{i}+2 \hat{j}-\hat{k}, \quad \vec{b}_{2}=2 \hat{i}+\hat{j}+\hat{k} \quad \therefore \quad \vec{a}_{2}-\vec{a}_{1}=3 \hat{i}+3 \hat{j}
$$

and $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & 1 & 1\end{array}\right|=3 \hat{i}-3 \hat{j}-3 \hat{k}$
Now, $\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=(3 \hat{i}+3 \hat{j}) \cdot(3 \hat{i}-3 \hat{j}-3 \hat{k})$

$$
=9-9=0
$$

Hence, shortest distance between the given lines is 0 .
(v) (c) : Since, the point $(1,2,-1)$ satisfy both the equations of lines, therefore point of intersection of given lines is $(1,2,-1)$.
So, the motorcycles will meet with an accident at the point (1, 2, -1).
11. (i) Clearly, the coordinates of A are $(8,10,0)$ and D are ($0,0,30$)
$\therefore \quad$ Equation of $A D$ is given by
$\frac{x-0}{8-0}=\frac{y-0}{10-0}=\frac{z-30}{-30}$
$\Rightarrow \frac{x}{4}=\frac{y}{5}=\frac{30-z}{15}$
(ii) Clearly, $O A=\sqrt{8^{2}+10^{2}}=\sqrt{164}$
$O B=\sqrt{6^{2}+4^{2}}=\sqrt{36+16}=\sqrt{52}$
and $O C=\sqrt{15^{2}+20^{2}}=\sqrt{225+400}=\sqrt{625}$
Thus, $O A+O B+O C=\sqrt{164}+\sqrt{52}+\sqrt{625}$
12. We have, $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-3 \hat{k}$

Vector equation of line is $\vec{r}=\vec{a}+\lambda \vec{b}$
$\Rightarrow \quad \vec{r}=-\hat{i}+\hat{j}+\hat{k}+\lambda(3 \hat{i}-\hat{j}-3 \hat{k})$
13. Direction ratios of the line $A B$ is $(0,-\sqrt{3},-1)$
\therefore Direction cosines of the line $A B$ is $\left(0,-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
Now, $\cos \alpha=0, \quad \cos \beta=\frac{-\sqrt{3}}{2}, \quad \cos \gamma=\frac{-1}{2}$
$\Rightarrow \alpha=\frac{\pi}{2}, \beta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}, \gamma=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
14. We know that the vector equation of a line passing through the points having position vectors \vec{a} and \vec{b} is given by $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$, where λ is a scalar.
Here, $\vec{a}=3 \hat{i}+4 \hat{j}-7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+6 \hat{k}$. So, the vector equation of the line passing through $A(3,4,-7)$ and
$B(1,-1,6)$ is
$\vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda[(\hat{i}-\hat{j}+6 \hat{k})-(3 \hat{i}+4 \hat{j}-7 \hat{k})]$
or $\vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$,
where λ is a scalar.
Reduction to cartesian form :
Putting $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in (i), we get
$x \hat{i}+y \hat{j}+z \hat{k}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$
or $x \hat{i}+y \hat{j}+z \hat{k}=(3-2 \lambda) \hat{i}+(4-5 \lambda) \hat{j}+(-7+13 \lambda) \hat{k}$
On equating coefficients of \hat{i}, \hat{j} and \hat{k}, we get
$x=3-2 \lambda, y=4-5 \lambda, z=-7+13 \lambda$
Eliminating λ, we have
$\frac{x-3}{2}=\frac{y-4}{5}=\frac{z+7}{-13}$
Hence, the cartesian form of the equation (i) is
$\frac{x-3}{2}=\frac{y-4}{5}=\frac{z+7}{-13}$
15. The line $A B$ is given by
$\frac{3-x}{-3}=\frac{y+2}{-2}=\frac{z+2}{6}$
$\Rightarrow \quad \frac{x-3}{3}=\frac{y+2}{-2}=\frac{z+2}{6}$
Its direction ratios are $3,-2,6$.
Hence its d.c's are
$\frac{3}{\sqrt{3^{2}+(-2)^{2}+6^{2}}}, \frac{-2}{\sqrt{3^{2}+(-2)^{2}+6^{2}}}, \frac{6}{\sqrt{3^{2}+(-2)^{2}+6^{2}}}$
i.e., $\frac{3}{7}, \frac{-2}{7}, \frac{6}{7}$
\therefore D.c's of a line parallel to $A B$ are proportional to $\frac{3}{7}, \frac{-2}{7}, \frac{6}{7}$
16. The given lines are
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})=(3 \lambda+1) \hat{i}+(1-\lambda) \hat{j}-\hat{k}$
and $\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})=(2 \mu+4) \hat{i}+0 \cdot \hat{j}+(3 \mu-1) \hat{k} \ldots$ (ii)
If the lines (i) and (ii) intersect, then they have a common point. So, we must have
$(3 \lambda+1) \hat{i}+(1-\lambda) \hat{j}-\hat{k}=(2 \mu+4) \hat{i}+0 \cdot \hat{j}+(3 \mu-1) \hat{k}$
$\Rightarrow 3 \lambda+1=2 \mu+4,1-\lambda=0$ and $-1=3 \mu-1$
On solving last two equations, we get $\lambda=1$ and $\mu=0$.
These values of λ and μ satisfy the first equation.
So, the given lines intersect.
Putting $\lambda=1$ in (i), we get the position vector of the point of intersection.
Thus, the coordinates of the point of intersection are $(4,0,-1)$.
17. Any point on the given line,
$\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}=k$ (say)
is $R(2 k+1,-3 k-1,8 k-10)$
If this is the foot of the perpendicular from $P(1,0,0)$ on (i), then $(2 k+1-1) \cdot 2+(-3 k-1-0) \cdot(-3)+(8 k-10-0) \cdot 8=0$
$\Rightarrow 4 k+9 k+3+64 k-80=0 \Rightarrow 77 k=77 \Rightarrow k=1$.
$\therefore \quad R$ is $(3,-4,-2)$.
This is the required foot of perpendicular.
Also, perpendicular distance $=P R$
$=\sqrt{(3-1)^{2}+(-4-0)^{2}+(-2-0)^{2}}=\sqrt{24}=2 \sqrt{6}$ units.
Also equation of $P R$ is $\frac{x-1}{2}=\frac{y}{-4}=\frac{z}{-2}$
18. We have given,
$\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k}$
$=8 \hat{i}-9 \hat{j}+10 \hat{k}+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k})$
Compare with $\vec{r}_{1}=\vec{a}_{1}+\lambda \vec{b}_{1}$, we get
$\vec{a}_{1}=8 \hat{i}-9 \hat{j}+10 \hat{k}$ and $\vec{b}_{1}=3 \hat{i}-16 \hat{j}+7 \hat{k}$
Also, $\vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$
$\Rightarrow \quad \vec{a}_{2}=15 \hat{i}+29 \hat{j}+5 \hat{k}$ and $\vec{b}_{2}=3 \hat{i}+8 \hat{j}-5 \hat{k}$
Now, shortest distance between two lines is given by
$\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Since, $\quad \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5\end{array}\right|$
$=\hat{i}(80-56)-\hat{j}(-15-21)+\hat{k}(24+48)$
$=24 \hat{i}+36 \hat{j}+72 \hat{k}$
$\Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(24)^{2}+(36)^{2}+(72)^{2}}$
$=12 \sqrt{2^{2}+3^{2}+6^{2}}=84$
and $\left(\vec{a}_{2}-\vec{a}_{1}\right)=(15-8) \hat{i}+(29+9) \hat{j}+(5-10) \hat{k}$
$=7 \hat{i}+38 \hat{j}-5 \hat{k}$
Hence, shortest distance
$=\left|\frac{(24 \hat{i}+36 \hat{j}+72 \hat{k}) \cdot(7 \hat{i}+38 \hat{j}-5 \hat{k})}{84}\right|$
$=\left|\frac{168+1368-360}{84}\right|=\left|\frac{1176}{84}\right|=14$ units .
OR
Here, $x_{1}=12, y_{1}=1, z_{1}=5, a_{1}=-9, b_{1}=4, c_{1}=2$ and $x_{2}=23, y_{2}=19, z_{2}=25, a_{2}=-6, b_{2}=-4, c_{2}=3$
$d=\left|\frac{\left|\begin{array}{ccc}11 & 18 & 20 \\ -9 & 4 & 2 \\ -6 & -4 & 3\end{array}\right|}{\sqrt{(12+8)^{2}+(-12+27)^{2}+(36+24)^{2}}}\right|$
$=\left|\frac{11(12+8)-18(-27+12)+20(36+24)}{\sqrt{400+225+3600}}\right|$
$=\left|\frac{220+270+1200}{\sqrt{4225}}\right|=\frac{1690}{\sqrt{4225}}=26$ units
19. The equations of the lines are
$\vec{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{i}-\hat{k}), \quad \vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}-\hat{j}-\hat{k})$
Here, $\vec{a}_{1}=\hat{i}-\hat{j}, \vec{b}_{1}=2 \hat{i}-\hat{k}$ and
$\vec{a}_{2}=2 \hat{i}-\hat{j}, \quad \vec{b}_{2}=\hat{i}-\hat{j}-\hat{k}$.
The S.D. between the given lines $=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Now, $\vec{a}_{2}-\vec{a}_{1}=\hat{i}$
$\Rightarrow \quad \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -1 \\ 1 & -1 & -1\end{array}\right|=-\hat{i}+\hat{j}-2 \hat{k}$
$\Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}$
$\therefore \quad$ S.D. $=\left|\frac{(-\hat{i}+\hat{j}-2 \hat{k}) \cdot \hat{i}}{\sqrt{6}}\right|=\frac{1}{\sqrt{6}}(\neq 0)$
\Rightarrow The given lines do not intersect.
20. Equation of the given line is
$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda$
$\Rightarrow \quad x=\lambda-5, y=4 \lambda-3, z=6-9 \lambda$ and dr's are $1,4,-9$
Let the coordinates of L be $(\lambda-5,4 \lambda-3,6-9 \lambda)$, and P be $(2,4,-1)$ then d.r.'s of $P L$ are $(\lambda-7,4 \lambda-7,7-9 \lambda)$.
Since, $P L$ is perpendicular to the given line.
$\therefore \quad(\lambda-7) \cdot 1+(4 \lambda-7) \cdot 4+(7-9 \lambda) \cdot(-9)=0$
$\Rightarrow \lambda-7+16 \lambda-28+81 \lambda-63=0$
$\Rightarrow 98 \lambda=98 \Rightarrow \lambda=1$
Therefore, the coordinates of L are ($-4,1,-3$).
$\therefore \quad$ Required distance, $P L$

$$
\begin{aligned}
& =\sqrt{(-4-2)^{2}+(1-4)^{2}+(-3+1)^{2}} \\
& =\sqrt{36+9+4}=7 \text { units }
\end{aligned}
$$

21. The given line is $\frac{x+2}{2}=\frac{2 y-7}{6}=\frac{5-z}{6}$
$\Rightarrow \quad \frac{x+2}{2}=\frac{y-\frac{7}{2}}{3}=\frac{z-5}{-6}$
Its d.r's are 2, 3, -6.
$\because \quad \sqrt{2^{2}+3^{2}+(-6)^{2}}=7$
$\therefore \quad$ Its d.c' s are $\frac{2}{7}, \frac{3}{7},-\frac{6}{7}$
Eq. of a line through $(-1,2,3)$ and parallel to (i) is
$\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-3}{-6}=\lambda$ (say)
$\therefore \quad$ Vector equation of a line passing through $(-1,2,3)$ and parallel to (i) is given by
$\vec{r}=(-\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}-6 \hat{k})$
22. Vector equation of a line passing through $(2,3,2)$ and parallel to the line
$\vec{r}=(-2 \hat{i}+3 \hat{j})+\lambda(2 \hat{i}-3 \hat{j}+6 \hat{k})$ is given by
$\vec{r}=(2 \hat{i}+3 \hat{j}+2 \hat{k})+\mu(2 \hat{i}-3 \hat{j}+6 \hat{k})$
Now, $\vec{a}_{1}=-2 \hat{i}+3 \hat{j}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$

$$
\vec{a}_{2}=2 \hat{i}+3 \hat{j}+2 \hat{k}
$$

Distance between given parallel lines
$=\left|\frac{\vec{b} \times\left(\vec{a}_{2}-\vec{a}_{1}\right)}{|\vec{b}|}\right|=\left|\frac{(2 \hat{i}-3 \hat{j}+6 \hat{k}) \cdot(4 \hat{i}+0 \hat{j}+2 \hat{k})}{|\sqrt{4+9+36}|}\right|$
$=\left|\frac{8+0+12}{\sqrt{49}}\right|=\frac{20}{7}$ units
23. Equation of given line $A B$ is $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

For image of $P(1,6,3)$ in line $A B$, draw a line $P R \perp A B$.
Then R is its image if Q is mid point of $P R$.
Let λ, μ, v be the d.r.'s of $P R$.
Now, $P R \perp A B$
$\Rightarrow \lambda \times 1+\mu \times 2+v \times 3=0$
$\Rightarrow \lambda+2 \mu+3 v=0$
and equation of $P R$ is
$\frac{x-1}{\lambda}=\frac{y-6}{\mu}=\frac{z-3}{v}$
Any point on it is $(\lambda k+1, \mu k+6, v k+3)$
Let it be Q.
As Q lies on line $A B$
$\therefore \quad$ From (i), $\frac{\lambda k+1}{1}=\frac{\mu k+6-1}{2}=\frac{v k+3-2}{3}$
$\Rightarrow \quad \frac{\lambda k+1}{1}=\frac{\mu k+5}{2}=\frac{v k+1}{3}$
$=\frac{1(\lambda k+1)+2(\mu k+5)+3(v k+1)}{1 \times 1+2 \times 2+3 \times 3}$
[By ratio and proportion]
$=\frac{14+(\lambda+2 \mu+3 v) k}{14}=1$
$\Rightarrow \quad \lambda k=0, \mu k=-3, v k=2$
$\Rightarrow \quad Q \equiv(0+1,-3+6,2+3)$ or $Q \equiv(1,3,5)$
Since Q is the mid point of $P R$,
$\therefore \quad \frac{1+\alpha}{2}=1, \frac{6+\beta}{2}=3, \frac{3+\gamma}{2}=5$
$\Rightarrow \quad \alpha=1, \beta=0, \gamma=7$
Hence $R \equiv(1,0,7)$, which is the image of P in line $A B$.
OR
Given lines are $\vec{r}=3 \hat{i}+8 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=-3 \hat{i}-7 \hat{j}+6 \hat{k}+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k})$
In cartesian form, we have
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}=\lambda$
and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}=\mu$
Any point on (i) has coordinates
$P(3 \lambda+3,-\lambda+8, \lambda+3)$ and on (ii)
$Q(-3 \mu-3,2 \mu-7,4 \mu+6)$
Direction ratios of $P Q$ are
$a=-3 \mu-3-3 \lambda-3=-3 \mu-3 \lambda-6$
$b=2 \mu-7+\lambda-8=2 \mu+\lambda-15$
$c=4 \mu+6-\lambda-3=4 \mu-\lambda+3$
As $P Q$ is perpendicular to (i) and (ii).
$\therefore \quad-9 \mu-9 \lambda-18-2 \mu-\lambda+15+4 \mu-\lambda+3=0$
$\Rightarrow-7 \mu-11 \lambda=0 \Rightarrow 7 \mu+11 \lambda=0$
and $9 \mu+9 \lambda+18+4 \mu+2 \lambda-30+16 \mu-4 \lambda+12=0$
$\Rightarrow 29 \mu+7 \lambda=0$
Solving (iii) and (iv), we get $\mu=0, \lambda=0$.
$\therefore \quad$ Coordinates of $P(3,8,3), Q(-3,-7,6)$ and direction ratios of $P Q$ are $<-6,-15,3>$ or $\langle 2,5,-1\rangle$.
So, shortest distance $P Q=\sqrt{6^{2}+15^{2}+(-3)^{2}}$
$=\sqrt{270}=3 \sqrt{30}$ units.
Vector equation of $P Q$ is
$\vec{r}=3 \hat{i}+8 \hat{j}+3 \hat{k}+\lambda(2 \hat{i}+5 \hat{j}-\hat{k})$

$m \neq G$
 BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information

