Linear Programming

SOLUTIONS

1. (c) : The feasible region as shown in the figure, has objective function F = 3x - 4y.

Corner Points	Value of $F = 3x - 4y$
(0, 0)	$3 \times 0 - 4 \times 0 = 0$
(12, 6)	3 × 12 – 4 × 6 = 12 (Maximum)
(0, 4)	$3 \times 0 - 4 \times 4 = -16$ (Minimum)

Hence, the maximum value of *F* is 12.

2. (d):

Corner Points	Value of $F = 4x + 6y$
(0, 2)	$4 \times 0 + 6 \times 2 = 12$ (Minimum)
(3, 0)	$4 \times 3 + 6 \times 0 = 12$ (Minimum)
(6, 0)	$4 \times 6 + 6 \times 0 = 24$
(6, 8)	$4 \times 6 + 6 \times 8 = 72$ (Maximum)
(0, 5)	$4 \times 0 + 6 \times 5 = 30$

Hence, minimum value of F occurs at (0, 2) and (3, 0). So it will occur at any point of the line segment joining the points (0, 2) and (3, 0).

3. (a) : Since, maximum value of z = ax + by occurs at both (2, 4) and (4, 0).

÷	2a + 4b = 4a + 0	$\Rightarrow 4b = 2a$	$a \Rightarrow 2b = a$
4.	(a)	5.	(a)
6.	(c)	7.	(b)
8.	(a)	9.	(c)
10.	(a)	11.	(c)
4.0			

12. (c)

13. In a LPP, objective function is always linear.

14. In a LPP, if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same maximum value.

15. A feasible region of a system of linear inequalities is said to be bounded, if it can be enclosed within a circle.

16. A corner point of a feasible region is a point in the region which is the intersection of two boundary lines.

17. Construct the following table of values of objective function

Corner Points	Value of $Z = 4x - 6y$
(0, 3)	$4 \times 0 - 6 \times 3 = -18$
(5, 0)	$4 \times 5 - 6 \times 0 = 20$
(6,8)	$4 \times 6 - 6 \times 8 = -24$
(0, 8)	$4 \times 0 - 6 \times 8 = -48$

- (i) (d) : Minimum value of Z is -48 which occurs at (0, 8).
- (ii) (a) : Maximum value of Z is 20, which occurs at (5, 0).
- (iii) (b) : Maximum of Z Minimum of Z

= 20 - (-48) = 20 + 48 = 68

- (iv) (c) : The corner points of the feasible region are O(0, 0),
- A(3, 0), B(3, 2), C(2, 3), D(0, 3).

(v) (d)

18. (i) From the graph of 3x + 4y < 12 and 5x + 6y > 30 it is clear that the graph has no common region. (ii) Maximum of objective function occurs at corner points.

<u>CHAP</u>TER

Corner Points	Value of $Z = 7x + 23y$
(0, 0)	0
(7, 0)	49
(6, 3)	111
(4, 5)	143 (Maximum)
(0, 6)	138

Hence, the maximum value of Z is 143, which is attained at point (4, 5).

19. We have, maximise Z = 11x + 7y, subject to the constraints $x \le 3$, $y \le 2$, $x \ge 0$, $y \ge 0$.

Let $l_1: x = 3, l_2: y = 2$

The feasible (shaded) region as shown in the figure as OABC is bounded. Let us evaluate *Z* at corner points O(0, 0), A(3, 0), B(3, 2) and C(0, 2).

Corner Points	Value of $Z = 11x + 7y$
O(0, 0)	$11 \times 0 + 7 \times 0 = 0$
A(3, 0)	$11 \times 3 + 7 \times 0 = 33$
B(3, 2)	11 × 3 + 7 × 2 = 47 (Maximum)
<i>C</i> (0, 2)	$11 \times 0 + 7 \times 2 = 14$

Hence, *Z* is maximum at (3, 2) and its maximum value is 47.

OR

From the graph, it is clear that feasible region is bounded. We have, Z = 11x + 7y.

Subject to constraints x + 3y = 9...(i)and x + y = 5...(ii)Solving (i) and (ii), we get...(iii)x = 3 and y = 2

Now, solving (i) and x = 0, we get x = 0 and y = 3.

Also solving (ii) and x = 0, we get x = 0 and y = 5.

Hence, the coordinate of the corner points of feasible region are (0, 3), (3, 2) and (0, 5).

Corner Points	Value of $Z = 11x + 7y$	
(0, 3)	11 × 0 + 7 × 3 = 21 (Mini	mum)
(3, 2)	$11 \times 3 + 7 \times 2 = 47$	
(0, 5)	11 × 0 + 7 × 5 = 35	

Hence, minimum value of *Z* is 21, which is attained at point (0, 3).

20. Converting inequations into equations and drawing the corresponding lines.

x = 3, y = 3, x + y = 5i.e. $x = 3, y = 3, \frac{x}{5} + \frac{y}{5} = 1$ As $x \ge 0, y \ge 0$ solution lies in first quadrant The point of intersection of the lines x = 3 and x + y = 5is B = (3, 2)The point of intersection of the lines y = 3 and x + y = 5is C = (2, 3)We have the corner points as A(3, 0), B(3, 2), C(2, 3) and D(0, 3) and O(0, 0)

Now, z = 10x + 25y

- $\therefore z(O) = 10(0) + 25(0) = 0$
 - z(A) = 10(3) + 25(0) = 30

z(B) = 10(3) + 25(2) = 80z(C) = 10(2) + 25(3) = 95

$$z(D) = 10(0) + 25(3) = 75$$

:. The maximum value of *z* is 95, which is attained at C(2, 3).

21. We draw the lines
$$4x + y = 20$$
, $2x + 3y = 30$

B is the point of intersection of the lines 4x + y = 20 and 2x + 3y = 30 *i.e.* B = (3, 8).

We have corner points A(15, 0), B(3, 8) and C(0, 20). Now, z = 18x + 10y

- \therefore z(A) = 18(15) + 10(0) = 270
 - z(B) = 18(3) + 10(8) = 134
 - z(C) = 18(0) + 10(20) = 200
- \therefore *z* has minimum value 134, which is attained at *B*(3, 8).

22. We have, $x_1 + 2x_2 = 2$; $2x_1 + 4x_2 = 8$ The constraints are shown by the graph.

From the graph, we conclude that there is no feasible region. *i.e.* there is no unique solution satisfying all the constraints.

23. Converting inequations into equations and drawing the corresponding lines.

x + y = 10, 3x - 2y = 15, x = 6

As $x \ge 0$, $y \ge 0$ solution lies in first quadrant.

B is the point of intersection of the lines x = 6 and 3x - 2y = 15 *i.e.* $B = \left(6, \frac{3}{2}\right)$

C is the point of intersection of the lines x = 6 and x + y = 10 *i.e.* C = (6, 4)

We have corner points A(5, 0), $B\left(6, \frac{3}{2}\right)$, C(6, 4) and D(0, 10) and O(0, 0)Now, z = x + y $\therefore \quad z(O) = 0 + 0 = 0$ z(A) = 5 + 0 = 5

$$z(B) = 6 + \frac{3}{2} = 7.5$$
$$z(C) = 6 + 4 = 10$$
$$z(D) = 0 + 10 = 10$$

 \therefore *z* has maximum value 10, which is attained at two points *C*(6, 4) and *D*(0, 10).

The given LPP is as below :

Maximise : Z = 16x + 24y ...(1) Subject to constraints: $x + y \le 1200$...(2)

 $y \le \frac{x}{2} \implies x - 2y \ge 0$ $x \le 3y + 600 \implies x - 3y \le 600$...(3)
...(4)

and $x, y \ge 0$

Let $l_1: x + y = 1200; l_2: x - 2y = 0; l_3: x - 3y = 600$

The shaded portion as shown in the figure is the feasible region which is bounded.

Let us evaluate *Z* at the corner points *O*(0, 0), *C*(600, 0), *F*(1050, 150) and *E*(800, 400).

Corner Points	Value of $Z = 16x + 24y$
O(0, 0)	0
C(600, 0)	9600
F(1050, 150)	20400
E(800, 400)	22400 (Maximum)

Hence, maximum value of *Z* = 22400 at (800, 400).

24. The given LPP is

Minimise Z = 10x + 10y

Subject to constraints :

$0.12x + 0.10y \ge 0.5 i.e., 6x + 5y \ge 25$	(i)
$100x + 150y \ge 600 \ i.e., \ 2x + 3y \ge 12$	(ii)
and $x, y \ge 0$	(iii)

The feasible region is shown shaded in figure and it is unbounded.

The coordinates of corner points are A(6, 0), $B\left(\frac{15}{8}, \frac{11}{4}\right)$ and C(0, 5).

Let us evaluate the objective function Z = 10x + 10y at these values.

Corner points	Value of $Z = 10x + 10y$
A(6, 0)	60
$B\left(\frac{15}{8},\frac{11}{4}\right)$	46.25 (Minimum)
<i>C</i> (0, 5)	50

The value of *Z* is minimum at $x = \frac{15}{8}$, $y = \frac{11}{4}$.

Since, feasible region is unbounded and open half plane determined by 10x + 10y < 46.25 has no point common with the feasible region. So, minimum value of *Z* occurs at x = 15/8 and y = 11/4.

Hence, the hospital dietician requires $\frac{15}{8}$ i.e., 1.875 units of food A and $\frac{11}{4}$, i.e., 2.75 units of food B to minimise the cost and the minimum cost is ₹ 46.25.

25. The given LPP is, Maximise Z = 1500x + 2000y

...(5)

$$2 \le x \le 8 \quad ...(i) \qquad 1 \le y \le 6 \qquad ...(ii)$$

$$x + y \le 10$$
 ...(iii) $x, y \ge 0$...(iv)

Let us graph the inequalities (i) to (iv). The feasible region is shown in figure.

Let us evaluate Z at the corner points *A*(2, 1), *B*(8, 1), *C*(8, 2), *D*(4, 6) and *E*(2, 6).

Corner points	Value of <i>Z</i> = 1500 <i>x</i> + 2000 <i>y</i>
A(2, 1)	5000
B(8, 1)	14000
C(8, 2)	16000
D(4, 6)	18000 (Maximum)
E(2, 6)	15000

Maximum value of Z is 18000 at D(4, 6).

MtG BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information