1. (b) : For $A \neq \phi$ and $B \neq \phi$,
$P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad$ (By conditional probability)
2. (d): We have, $P(A)=\frac{7}{13}, P(B)=\frac{9}{13}$
and $P(A \cap B)=\frac{4}{13}$
Now, $P\left(A^{\prime} \mid B\right)=\frac{P\left(A^{\prime} \cap B\right)}{P(B)}=\frac{P(B)-P(A \cap B)}{P(B)}$

$$
=\frac{\frac{9}{13}-\frac{4}{13}}{\frac{9}{13}}=\frac{5}{9} .
$$

3. (c) : Since, $P(A)>0$ and $P(B) \neq 1$

Now, $P\left(A^{\prime} \mid B^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{P(A \cup B)^{\prime}}{P\left(B^{\prime}\right)}=\frac{1-P(A \cup B)}{P\left(B^{\prime}\right)}$
4. (c) : Let E_{1} be the event for getting an even number on the die.
and E_{2} be the event that a spade card is selected.
$\therefore \quad P\left(E_{1}\right)=\frac{3}{6}=\frac{1}{2}$ and $P\left(E_{2}\right)=\frac{13}{52}=\frac{1}{4}$
Now, $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}$.
5. (d) : Since $E\left(X^{2}\right)=\Sigma X^{2} P(X)$
$=1 \cdot \frac{1}{10}+4 \cdot \frac{1}{5}+9 \cdot \frac{3}{10}+16 \cdot \frac{2}{5}=\frac{1+8+27+64}{10}=10$.
6. (c) : Let E_{i} be the event that the first i cards have no pair among them. Then we want to compute $P\left(E_{6}\right)$, which is actually the same as $P\left(E_{1} \cap E_{2} \cap \ldots \cap E_{6}\right)$, since $E_{6} \subset E_{5} \subset \ldots \subset E_{1}$, implying that $E_{1} \cap E_{2} \cap \ldots \cap E_{6}=E_{6}$.
$\therefore \quad P\left(E_{1} \cap E_{2} \cap \ldots \cap E_{6}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} \cap E_{2}\right) \ldots$
$=\frac{52}{52} \cdot \frac{48}{51} \cdot \frac{44}{50} \cdot \frac{40}{49} \cdot \frac{36}{48} \cdot \frac{32}{47}=0.345$
7. (d)
8. Required probability $=1-P$ (getting no head in three trials)
$=1-\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=1-\frac{1}{8}=\frac{7}{8}$
9. If A, B, C are independent events, then
$P(A \cap B \cap C)=P(A) \cdot P(B) \cdot P(C)$
10. We have, $P(\bar{E}$ or $\bar{F})=0.25 \Rightarrow P(\bar{E} \cup \bar{F})=0.25$
$\Rightarrow P(\overline{E \cap F})=0.25$
$\Rightarrow 1-P(E \cap F)=0.25 \Rightarrow P(E \cap F)=0.75$
$\Rightarrow \quad E$ and F are not mutually exclusive events

$$
[\because P(E \cap F) \neq 0]
$$

11. Total number of possible outcomes $={ }^{30} \mathrm{C}_{2}=\frac{30 \times 29}{2 \times 1}$

$$
=15 \times 29=435
$$

Sum of two numbers is odd if one is odd and other is even.
Number of favourable outcomes $={ }^{15} C_{1} \times{ }^{15} C_{1}=225$
Required Probability $=\frac{225}{435}=\frac{15}{29}$.
12. Let A be the event of getting an odd number on first die and B be the event of getting a multiple of 3 on the second die.
Then, $A=\{1,3,5\}$ and $B=\{3,6\}$
$\therefore \quad P(A)=\frac{3}{6}=\frac{1}{2}$ and $P(B)=\frac{2}{6}=\frac{1}{3}$
Now, required probability $=P(A \cap B)$

$$
\begin{aligned}
& =P(A) \cdot P(B) \quad[\because A \text { and } B \text { are independent }] \\
& =\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6} .
\end{aligned}
$$

13. $1-\left(1-p_{1}\right)\left(1-p_{2}\right)=1-P\left(\bar{E}_{1}\right) \cdot P\left(\bar{E}_{2}\right)$

$$
\begin{aligned}
& =1-P\left(\bar{E}_{1} \cap \bar{E}_{2}\right)=1-P\left(\overline{E_{1} \cup E_{2}}\right) \\
& =1-\left[1-P\left(E_{1} \cup E_{2}\right)\right]=P\left(E_{1} \cup E_{2}\right)
\end{aligned}
$$

Therefore, the given probability means either E_{1} or E_{2} or both E_{1} and E_{2} occurs.
14. (i) (d) : Since, it rained only 6 days each year, therefore, probability that it rains on chosen day is $\frac{6}{366}=\frac{1}{61}$
(ii) (c) : The probability that it does not rain on chosen day $=1-\frac{1}{61}=\frac{60}{61}=\frac{360}{366}$
(iii) (c) : It is given that, when it actually rains, the weatherman correctly forecasts rain 80% of the time.
$\therefore \quad$ Required probability $=\frac{80}{100}=\frac{8}{10}=\frac{4}{5}$
(iv) (a) : Let A_{1} be the event that it rains on chosen day, A_{2} be the event that it does not rain on chosen day and E be the event the weatherman predict rain.

Then we have, $P\left(A_{1}\right)=\frac{6}{366}, P\left(A_{2}\right)=\frac{360}{366}$,
$P\left(E \mid A_{1}\right)=\frac{8}{10}$ and $P\left(E \mid A_{2}\right)=\frac{2}{10}$
Required probability $=P\left(A_{1} \mid E\right)$
$=\frac{P\left(A_{1}\right) \cdot P\left(E \mid A_{1}\right)}{P\left(A_{1}\right) \cdot P\left(E \mid A_{1}\right)+P\left(A_{2}\right) \cdot P\left(E \mid A_{2}\right)}$
$=\frac{\frac{6}{366} \times \frac{8}{10}}{\frac{6}{366} \times \frac{8}{10}+\frac{360}{366} \times \frac{2}{10}}=\frac{48}{768}=0.0625$
(v) (a) : Required probability $=1-P\left(A_{1} \mid E\right)$

$$
=1-0.0625=0.9375 \approx 0.94
$$

15. (i) Let H be the event that husband is watching T.V., W be the event that wife is watching T.V.

Then, $P(\mathrm{H})=0.7, P(\overline{\mathrm{H}})=0.3$
$P(\mathrm{~W} \mid \mathrm{H})=0.3$ and $P(\mathrm{~W} \mid \overline{\mathrm{H}})=0.4$
$\therefore \quad$ Required probability $=P(\mathrm{H} \mid \mathrm{W})$

$$
\begin{aligned}
& =\frac{P(\mathrm{H}) \cdot P(\mathrm{~W} \mid \mathrm{H})}{P(\mathrm{H}) \cdot P(\mathrm{~W} \mid \mathrm{H})+P(\overline{\mathrm{H}}) P(\mathrm{~W} \mid \overline{\mathrm{H}})} \\
& =\frac{0.7 \times 0.3}{0.7 \times 0.3+0.4 \times 0.3}=\frac{0.21}{0.33}=\frac{7}{11}
\end{aligned}
$$

(ii) $P(\mathrm{H} \cap \mathrm{W})=P(\mathrm{H}) \times P(\mathrm{~W} \mid \mathrm{H})=0.7 \times 0.3=0.21$

$$
\text { Required probability }=P(\mathrm{~W})=\frac{P(\mathrm{H} \cap \mathrm{~W})}{P(\mathrm{H} \mid \mathrm{W})}
$$

$$
=\frac{0.21}{7 / 11}=\frac{21}{100} \times \frac{11}{7}=\frac{33}{100}=0.33
$$

16. Let E_{i} be the event that the student misses $i^{\text {th }}$ test $(i=1,2)$. Then E_{1} and E_{2} are independent events such that $P\left(E_{1}\right)=\frac{1}{5}=P\left(E_{2}\right)$.
$\therefore \quad$ Required probability $=P\left(E_{1} \cup E_{2}\right)=1-P\left(\overline{E_{1} \cup E_{2}}\right)$

$$
\begin{aligned}
& =1-P\left(\bar{E}_{1} \cap \bar{E}_{2}\right)=1-P\left(\bar{E}_{1}\right) P\left(\bar{E}_{2}\right) \\
& \quad\left[\because E_{1}, E_{2} \text { are independent }\right] \\
& =1-\left(1-\frac{1}{4}\right)\left(1-\frac{1}{4}\right)=1-\frac{9}{16}=\frac{7}{16}
\end{aligned}
$$

OR
Let A be the event of first person hitting the target and B be the event of second person hitting the target.
$E=A \cup B=$ the event that the target will be hit (by at least one person)
According to question,

$$
P(A)=\frac{3}{4}, P(B)=\frac{2}{3} \quad \therefore P\left(A^{\prime}\right)=\frac{1}{4}, P\left(B^{\prime}\right)=\frac{1}{3}
$$

Now required probability,

$$
\begin{aligned}
P(E)=P(A \cup B) & =1-P(A \cup B)^{\prime}=1-P\left(A^{\prime} \cap B^{\prime}\right) \\
& =1-P\left(A^{\prime}\right) \cdot P\left(B^{\prime}\right)
\end{aligned}
$$

[Since, A and B are independent events]

$$
=1-\frac{1}{4} \times \frac{1}{3}=\frac{11}{12}
$$

17. We have
$P($ at least one of A and $B)=P(A \cup B)$

$$
\begin{aligned}
& =P(A)+P(B)-P(A \cap B) \\
& =P(A)+P(B)-P(A) P(B) \\
& =P(A)+P(B)[1-P(A)] \\
& =P(A)+P(B) \cdot P\left(A^{\prime}\right) \\
& =1-P\left(A^{\prime}\right)+P(B) P\left(A^{\prime}\right) \\
& =1-P\left(A^{\prime}\right)[1-P(B)] \\
& =1-P\left(A^{\prime}\right) P\left(B^{\prime}\right) .
\end{aligned}
$$

18. Let E_{1} be the event that a student selected at random is a girl, E_{2} be the event that a student selected at random is a boy and E be the event that a student selected at random will get first division.
Given, number of boys : number of girls $=1: 2$
$\therefore \quad P\left(E_{1}\right)=\frac{2}{3}$ and $P\left(E_{2}\right)=\frac{1}{3}$
and $P\left(E \mid E_{1}\right)=0.25, P\left(E \mid E_{2}\right)=0.28$
By rule of total probability,

$$
\begin{aligned}
P(E) & =P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right) \\
& =\frac{2}{3}(0.25)+\frac{1}{3}(0.28)=\frac{0.78}{3}=0.26
\end{aligned}
$$

19. Consider the following events:
$A=$ a student pass in Mathematics
$B=$ a student pass in Computer Science
We have, $P(A)=\frac{4}{5}, P(A \cap B)=\frac{1}{2}$
Required probability, $P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{1 / 2}{4 / 5}=\frac{5}{8}$.
20. Let E_{2} be the event that first ball being red and E_{1} be the event that exactly two of the three balls being red
Then $E_{1}=\{R R B, R B R, B R R\}$

$$
E_{2}=\{R B B, R R B, R B R, R R R\}
$$

$\therefore \quad E_{1} \cap E_{2}=\{R R B, R B R\}$
Now, $P\left(E_{2}\right)=P_{R} P_{B} P_{B}+P_{R} P_{R} P_{B}+P_{R} P_{B} P_{R}+P_{R} P_{R} P_{R}$
$=\left(\frac{5}{8} \times \frac{3}{7} \times \frac{2}{6}\right)+\left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}\right)+\left(\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6}\right)+\left(\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}\right)$
$=\frac{(30+60+60+60)}{336}=\frac{210}{336}$
Now, $P\left(E_{1} \cap E_{2}\right)=P_{R} \cdot P_{B} \cdot P_{R}+P_{R} \cdot P_{R} \cdot P_{B}$

$$
=\frac{5}{8} \cdot \frac{3}{7} \cdot \frac{4}{6}+\frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6}=\frac{120}{336}
$$

$\therefore \quad P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}=\frac{120 / 336}{210 / 336}=\frac{4}{7}$.
21. Let $E_{1}=$ A total of $8=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$ and $E_{2}=$ A total of $5=\{(1,4),(2,3),(3,2),(4,1)\}$
Let $P\left(E_{1}\right)$ is the probability that A wins the game, then, $P\left(E_{1}\right)=\frac{5}{36} \Rightarrow P\left(\bar{E}_{1}\right)=1-\frac{5}{36}=\frac{31}{36}$
and $P\left(E_{2}\right)$ is the probability that B wins the game,
then, $P\left(E_{2}\right)=\frac{4}{36}=\frac{1}{9} \Rightarrow P\left(\bar{E}_{2}\right)=1-\frac{1}{9}=\frac{8}{9}$
Hence, required probability

$$
\begin{aligned}
& =P\left(\bar{E}_{1}\right) \cdot P\left(\bar{E}_{2}\right) \cdot P\left(E_{1}\right) \\
& =\frac{31}{36} \cdot \frac{8}{9} \cdot \frac{5}{36}=\frac{155}{1458} .
\end{aligned}
$$

OR

Clearly, $P(E)=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}$
[\because There is no common card between king and queen] $P(F)=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}$
$[\because$ There is no common card between queen and ace] and $P(E \cap F)=P($ the drawn card is a queen $)=\frac{4}{52}$
$\therefore \quad$ Required probability $=P(E \mid F)$

$$
=\frac{P(E \cap F)}{P(F)}=\frac{\frac{4}{52}}{\frac{8}{52}}=\frac{1}{2} .
$$

22. We have,

$$
P(X=x)=\left\{\begin{array}{cl}
k(x+1), & \text { for } x=1,2,3,4 \\
2 k x, & \text { for } x=5,6,7 \\
0, & \text { otherwise }
\end{array}\right.
$$

Thus, we have following table

X	1	2	3	4	5	6	7	Other- wise
$P(X)$	$2 k$	$3 k$	$4 k$	$5 k$	$10 k$	$12 k$	$14 k$	0
$X P(X)$	$2 k$	$6 k$	$12 k$	$20 k$	$50 k$	$72 k$	$98 k$	0
$X^{2} P(X)$	$2 k$	$12 k$	$36 k$	$80 k$	$250 k$	$432 k$	$686 k$	0

(i) Since, $\sum_{i=1}^{n} P\left(x_{i}\right)=1$

$$
\Rightarrow \quad k(2+3+4+5+10+12+14+0)=1 \Rightarrow k=\frac{1}{50}
$$

(ii) $\because E(X)=\Sigma X P(X)$
$\therefore \quad E(X)=2 k+6 k+12 k+20 k+50 k+72 k+98 k+0=260 k$

$$
=260 \times \frac{1}{50}=\frac{26}{5}=5.2
$$

(iii) As we know
$E\left(X^{2}\right)=\Sigma X^{2} P(X)$
$=[2 k+12 k+36 k+80 k+250 k+432 k+686 k+0]$
$=1498 k=1498 \times \frac{1}{50}$

$$
=29.96
$$

OR

Let $X=$ number of two seen
Then $X=0,1,2,3 . \quad(\because$ die is thrown three times)
Also, $P(2)=\frac{1}{6}, P(\operatorname{not} 2)=1-P(2)=\frac{5}{6}$

Therefore, $P(X=0)=P(\operatorname{not} 2) \cdot P(\operatorname{not} 2) \cdot P(\operatorname{not} 2)$

$$
=\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6}=\frac{125}{216}
$$

$P(X=1)=P(\operatorname{not} 2) \cdot P(\operatorname{not} 2) \cdot P(2)+P(\operatorname{not} 2) \cdot P(2) \cdot P(\operatorname{not} 2)$

$$
+P(2) \cdot P(\operatorname{not} 2) \cdot P(\operatorname{not} 2)
$$

$$
=\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6} \cdot \frac{5}{6}+\frac{1}{6} \cdot \frac{5}{6} \cdot \frac{5}{6}=\frac{25}{36} \cdot \frac{3}{6}=\frac{25}{72}
$$

$$
P(X=2)=P(\operatorname{not} 2) \cdot P(2) \cdot P(2)+P(2) \cdot P(2) \cdot P(\operatorname{not} 2)
$$

$$
+P(2) \cdot P(\operatorname{not} 2) \cdot P(2)
$$

$$
=\frac{5}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6}+\frac{1}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}=\frac{15}{216}
$$

$$
P(X=3)=P(2) \cdot P(2) \cdot P(2)=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}=\frac{1}{216}
$$

Now, $E(X)=\Sigma X P(X)$

$$
=0 \cdot \frac{125}{216}+1 \cdot \frac{25}{72}+2 \cdot \frac{15}{216}+3 \cdot \frac{1}{216}=\frac{75+30+3}{216}=\frac{108}{216}=\frac{1}{2} .
$$

23. The sample space S associated with the given random experiment is
$S=\{(H, H),(H, T),(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\}$. Let A be the event that the die shows a number less than 4 and B be the event that the first throw of the coin results in head. Then,

$$
\begin{aligned}
& A=\{(T, 1)(T, 2)(T, 3)\} \text { and } B=\{(H, H),(H, T)\} \\
\therefore & A \cap B=\phi
\end{aligned}
$$

$\therefore \quad$ Required probability $=P(A \mid B)=\frac{P(A \cap B)}{P(B)}=0$
24. Let R be the event of getting red ball in a draw and B be the event of getting blue ball in a draw.
Required probability $=P(R B B)+P(B R B)+P(B B R)$

$$
=\frac{5}{8} \times \frac{3}{7} \times \frac{2}{6}+\frac{3}{8} \times \frac{5}{7} \times \frac{2}{6}+\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}=3\left(\frac{30}{8 \times 7 \times 6}\right)=\frac{15}{56} .
$$

OR

Let O be the event of getting a orange ball in a draw G be the event of getting a green ball in a draw and B be the event of getting a blue ball in a draw.
Then, required probability
(i) $\quad P(G G B)+P(G B G)+P(B G G)$

$$
\begin{aligned}
& =\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6}+\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6}+\frac{2}{8} \times \frac{3}{7} \times \frac{2}{6} \\
& =3\left(\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6}\right)=\frac{3}{28}
\end{aligned}
$$

(ii)
$P(G G B)+P(G B B)+P(B G B)+P(O G B)+P(G O B)$

$$
\begin{array}{r}
\quad+P(O B B)+P(B O B)+P(O O B) \\
=\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6}+\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}+\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6}+\frac{3}{8} \times \frac{3}{7} \times \frac{2}{6}+\frac{3}{8} \times \frac{3}{7} \times \frac{2}{6} \\
+\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}+\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6}+\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6} \\
=\frac{1}{336}[12+6+6+18+18+6+6+12]=\frac{84}{336}=\frac{1}{4} .
\end{array}
$$

25. Let $P(A)=x$ and $P(B)=y$.

We have, $P(A \cap B)=1 / 8$ and $P(\bar{A} \cap \bar{B})=3 / 8$
Now, $P(A \cap B)=1 / 8$
$\Rightarrow \quad P(A) P(B)=1 / 8 \Rightarrow x y=1 / 8$
Since A and B are independent events. Therefore, so are A^{\prime} and B^{\prime}.
Since, $P(\bar{A} \cap \bar{B})=\frac{3}{8}$
$\Rightarrow \quad P(\bar{A}) P(\bar{B})=\frac{3}{8}$
$\Rightarrow \quad(1-x)(1-y)=\frac{3}{8}$
$\Rightarrow 1-x-y+x y=\frac{3}{8}$
$\Rightarrow \quad x+y-x y=\frac{5}{8}$
$\Rightarrow x+y-\frac{1}{8}=\frac{5}{8}$
$\Rightarrow x+y=\frac{3}{4}$
Now, $(x-y)^{2}=(x+y)^{2}-4 x y$
$\Rightarrow \quad(x-y)^{2}=\frac{9}{16}-4 \times \frac{1}{8}=\frac{1}{16}$
$\Rightarrow \quad x-y= \pm \frac{1}{4}$
Case I: When $x-y=\frac{1}{4}$:
In this case, we have

$$
\begin{aligned}
x-y & =\frac{1}{4} \text { and } x+y=\frac{3}{4} \Rightarrow x=\frac{1}{2} \text { and } y=\frac{1}{4} \\
\Rightarrow \quad P(A) & =\frac{1}{2} \text { and } P(B)=\frac{1}{4} .
\end{aligned}
$$

Case II: When $x-y=-\frac{1}{4}$:
In this case, we have

$$
\begin{aligned}
& x-y=-\frac{1}{4} \text { and } x+y=\frac{3}{4} \Rightarrow x=\frac{1}{4} \text { and } y=\frac{1}{2} \\
\Rightarrow & P(A)=\frac{1}{4} \text { and } P(B)=\frac{1}{2}
\end{aligned}
$$

Hence, $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{4}$
or $\quad P(A)=\frac{1}{4}$ and $P(B)=\frac{1}{2}$.
26. Consider the following events:
$E=A$ hits the target, $F=B$ hits the target, and
$G=C$ hits the target
We have, $P(E)=\frac{4}{5}, P(F)=\frac{3}{4}$ and $P(G)=\frac{2}{3}$
$\Rightarrow P(\bar{E})=1-\frac{4}{5}=\frac{1}{5}, \Rightarrow P(\bar{F})=1-\frac{3}{4}=\frac{1}{4}, P(\bar{G})=1-\frac{2}{3}=\frac{1}{3}$
(i) Required probability $=P(A, B, C$ all may hit $)$
$=P(E \cap F \cap G)$
$=P(E) P(F) P(G)[\because E, F, G$ are independent events $]$ $=\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3}=\frac{2}{5}$.
(ii) Required probability $=P(B, C$ may hit and A may not $)$
$=P(\bar{E} \cap F \cap G)$
$=P(\bar{E}) P(F) P(G)[\because E, F, G$ are independent events $]$ $=\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3}=\frac{1}{10}$.
(iii) Required probability $=P$ (Any two of A, B and C
will hit the target)
$=P((E \cap F \cap \bar{G}) \cup(\bar{E} \cap F \cap G) \cup(E \cap \bar{F} \cap G))$
$=P(E \cap F \cap \bar{G})+P(\bar{E} \cap F \cap G)+P(E \cap \bar{F} \cap G)$
$=P(E) P(F) P(\bar{G})+P(\bar{E}) P(F) P(G)+P(E) P(\bar{F}) P(G)$
$=\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3}+\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3}+\frac{4}{5} \times \frac{1}{4} \times \frac{2}{3}=\frac{13}{30}$.
(iv) Required probability $=P$ (None of A, B and C will hit the target)

$$
=P(\bar{E} \cap \bar{F} \cap \bar{G})=P(\bar{E}) P(\bar{F}) P(\bar{G})=\frac{1}{5} \times \frac{1}{4} \times \frac{1}{3}=\frac{1}{60} .
$$

OR

Let E denote the event that X gets grade A in Mathematics. F denote the event that X gets grade A in Physics. G denote the event that X gets grade A in Chemistry.
Given : $P(E)=0.2, P(F)=0.3, P(G)=0.5$

$$
\begin{aligned}
& P(\bar{E})=1-0.2=0.8 \\
& P(\bar{F})=1-0.3=0.7, \\
& P(\bar{G})=1-0.5=0.5 .
\end{aligned}
$$

(i) $\quad P$ (grade A in all subjects)

$$
\begin{aligned}
& =P(E \cap F \cap G)=P(E) P(F) P(G) \\
& =0.2 \times 0.3 \times 0.5=0.03 .
\end{aligned}
$$

(ii) P (grade A in no subject)

$$
\begin{aligned}
& =P(\bar{E} \cap \bar{F} \cap \bar{G})=P(\bar{E}) \cdot(\bar{F}) \cdot(\bar{G}) \\
& =0.8 \times 0.7 \times 0.5=0.28
\end{aligned}
$$

(iii) P (grade A in two subjects)

$$
\begin{aligned}
& =P(E \cap F \cap \bar{G})+P(E \cap \bar{F} \cap G)+P(\bar{E} \cap F \cap G) \\
& =P(E) P(F) P(\bar{G})+P(E) P(\bar{F}) P(G)+P(\bar{E}) P(F) P(G) \\
& =0.2 \times 0.3 \times 0.5+0.2 \times 0.7 \times 0.5+0.8 \times 0.3 \times 0.5 \\
& =0.03+0.07+0.12=0.22 .
\end{aligned}
$$

27. Let E_{1} be the event that one heart card is lost. E_{2} be the event that two heart cards are lost, E_{3} be the event that three heart cards are lost. Also, let E be event of getting a heart card.

Then, $P\left(E_{1}\right)=\frac{{ }^{13} C_{1} \times{ }^{39} C_{2}}{{ }^{52} C_{3}}, P\left(E_{2}\right)=\frac{{ }^{13} C_{2} \times{ }^{39} C_{1}}{{ }^{52} C_{3}}$,
$P\left(E_{3}\right)=\frac{{ }^{13} C_{3}}{{ }^{52} C_{3}}$
$P\left(E \mid E_{1}\right)=\frac{12}{49}, P\left(E \mid E_{2}\right)=\frac{11}{49}$ and $P\left(E \mid E_{3}\right)=\frac{10}{49}$
Required probability $=P\left(E_{3} \mid E\right)$

$$
=\frac{P\left(E_{3}\right) \cdot P\left(E \mid E_{3}\right)}{P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right)+P\left(E_{3}\right) \cdot P\left(E \mid E_{3}\right)}
$$

$$
=\frac{\frac{10}{49} \cdot \frac{{ }^{13} C_{3}}{{ }^{52} C_{3}}}{\frac{12}{49} \cdot\left(\frac{{ }^{13} C_{1} \times{ }^{39} C_{2}}{{ }^{52} C_{3}}\right)+\frac{11}{49} \cdot\left(\frac{{ }^{13} C_{2} \times{ }^{39} C_{1}}{{ }^{52} C_{3}}\right)+\frac{10}{49} \cdot\left(\frac{{ }^{13} C_{3}}{{ }^{52} C_{3}}\right)}
$$

$$
=\frac{10 \cdot{ }^{13} C_{3}}{12 \cdot\left({ }^{13} C_{1} \times{ }^{39} C_{2}\right)+11 \cdot\left({ }^{13} C_{2} \times{ }^{39} C_{1}\right)+10 \cdot{ }^{13} C_{3}}
$$

$$
=\frac{10 \cdot \frac{13 \times 12 \times 11}{3 \times 2 \times 1}}{12 \cdot\left(\frac{13 \times 39 \times 38}{2 \times 1}\right)+11 \cdot\left(\frac{13 \times 12 \times 39}{2}\right)+10 \cdot\left(\frac{13 \times 12 \times 11}{3 \times 2 \times 1}\right)}
$$

$$
=\frac{10 \times \frac{11}{3}}{39 \times 38+11 \times 39+10 \times \frac{11}{3}}=\frac{110}{4446+1287+110}=\frac{110}{5843} .
$$

28.

	Blood group 'O'	Other than blood group 'O'
I. Number of people	30%	70%
II. Left handed people	6%	10%

$E_{1}=$ Event that the person selected is of blood group O,
$E_{2}=$ Event that the person selected is of other than blood group O.
$E=$ Event that selected person is left handed.
$\therefore \quad P\left(E_{1}\right)=0.30, P\left(E_{2}\right)=0.70$
$P\left(E \mid E_{1}\right)=0.06$ and $P\left(E \mid E_{2}\right)=0.10$
By using Bayes' theorem, $P\left(E_{1} \mid E\right)$

$$
\begin{aligned}
& =\frac{P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)}{P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right)} \\
& =\frac{0.30 \times 0.06}{(0.30 \times 0.06)+(0.70 \times 0.10)}=\frac{9}{44} .
\end{aligned}
$$

OR
Let A, E_{1}, E_{2}, E_{3} and E_{4} be the events as defined below :
A : a black ball is selected
E_{1} : box I is selected
E_{2} : box II is selected
E_{3} : box III is selected $E_{4}:$ box IV is selected

Since the boxes are chosen at random,
Therefore, $P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=P\left(E_{4}\right)=\frac{1}{4}$
Also $P\left(A \mid E_{1}\right)=\frac{3}{18}, P\left(A \mid E_{2}\right)=\frac{2}{8}=\frac{1}{4}, P\left(A \mid E_{3}\right)=\frac{1}{7}$ and $P\left(A \mid E_{4}\right)=\frac{4}{13}$
P (box III is selected, given that the drawn ball is black)

$$
=P\left(E_{3} \mid A\right)
$$

By Bayes' theorem,

$$
\begin{array}{r}
P\left(E_{3} \mid A\right)=\frac{P\left(E_{3}\right) \cdot P\left(A \mid E_{3}\right)}{P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+P\left(E_{3}\right) \cdot P\left(A \mid E_{3}\right)} \\
+P\left(E_{4}\right) \cdot P\left(A \mid E_{4}\right)
\end{array}
$$

$$
=\frac{\frac{1}{4} \times \frac{1}{7}}{\frac{1}{4} \times \frac{3}{18}+\frac{1}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{7}+\frac{1}{4} \times \frac{4}{13}}=0.165
$$

$m \neq G$
 BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information

