Relations and Functions

 SOLUTIONS1. (c) : To find the equivalence class of $(3,2)$, we will take element a as multiple of 3 and element b as multiple of 2.
Then, the ordered pairs are
$\{(3,2),(6,4),(9,6),(12,8),(15,10),(18,12)\}$
Hence, required number of pairs are 6 .
2. (d) : Given function $f: R \rightarrow R$ defined by

$$
f(x)=\frac{x^{2}-8}{x^{2}+2}
$$

We observe that for negative and positive values of x, we get same value of $f(x)$.
Hence, $f(x)$ is not one-one.
Also, $y=f(x) \Rightarrow y=\frac{x^{2}-8}{x^{2}+2} \Rightarrow y x^{2}+2 y=x^{2}-8$
$\Rightarrow x=\sqrt{\frac{2 y+8}{1-y}}$
For $y=1$, we can't define x, hence f is not onto.
3. (c) : We know that if A and B are two non-empty sets containing m and n elements respectively, then number of one-one function from A to $B=\left\{\begin{array}{c}{ }^{n} P_{m}, \text { if } n \geq m \\ 0, \text { if } n=m\end{array}\right.$ Here, $n=8$ and $m=7$
$\therefore \quad$ Required number of one-one mapping $={ }^{8} P_{7}$
$=\frac{8!}{(8-7)!}=8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=40320$
4. (c): We know that if A and B are two non-empty sets containing m and n elements respectively, then number of bijections from A to $B=\left\{\begin{array}{c}n!\text {, if } m=n \\ 0, \text { if } m \neq n\end{array}\right.$
Here $m=n=3$
$\therefore \quad$ Required number of bijections $=3!=3 \times 2=6$.
5. (d) : Given, $f(x)=\sin x \forall x \in R$

As, $\sin x \in[-1,1] \quad \therefore f(x) \in[-1,1]$
As f is onto
$\therefore \quad B=\{x: x \in[-1,1]\}$
6. Given, $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 10$\}$.
$\Rightarrow \quad R=\{(2,8),(3,27),(5,125),(7,343)\}$
Hence, range of $R=\{8,27,125,343\}$.
7. For two non empty sets A and B containing m and n elements, number of onto functions is
$\sum_{r=1}^{n}(-1)^{n-r}{ }^{n} C_{r} r^{m}$, if $m \geq n$

Here, $m=4$ and $n=2$
\therefore Required number of onto functions

$$
\begin{aligned}
& =\sum_{r=1}^{2}(-1)^{2-r}{ }^{2} C_{r} r^{4}=(-1)^{1} \cdot{ }^{2} C_{1}(1)^{4}+(-1)^{0} \cdot{ }^{2} C_{2}(2)^{4} \\
& =-\frac{2!}{1!(2-1)!}+1 \cdot \frac{2!}{2!(2-2)!} 2^{4}=-2+16=14
\end{aligned}
$$

8. Since the set contains 4 elements.
\therefore Total number of reflexive relations $=2^{4(4-1)}=2^{12}$.
9. We have, $R=\{(1,2),(2,1)\}$ defined on set $\{1,2,3\}$.

As, $(1,2) \in R,(2,1) \in R$ but $(1,1) \notin R$.
$\therefore \quad R$ is not transitive.

Since, every element of A has its unique image in B.
$\therefore \quad f$ is one-one.
10. Let $x_{1}, x_{2} \in[-1,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad \frac{x_{1}}{x_{1}+2}=\frac{x_{2}}{x_{2}+2}$
$\Rightarrow \quad x_{1} x_{2}+2 x_{1}=x_{1} x_{2}+2 x_{2} \Rightarrow x_{1}=x_{2}$
Hence, f is one-one.
11. Given, $A=\{a, b, c\}$ and R be a reflexive relation on A.
$\therefore \quad R=\{(a, a),(b, b),(c, c)\}$.
12. Here, $f: R \rightarrow R$ given by $f(x)=x+\sqrt{x^{2}}$

$$
=x \pm x=0 \text { or } 2 x
$$

Now, $f(0)=0$ and $f(-1)=-1+\sqrt{(-1)^{2}}=-1+1=0$
So, image of 0 and -1 is 0 .
$\therefore \quad f$ is many-one function.
13. (i) (a): $R=\{(x, y): y$ is divisible by $x\}$
$=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(1,3)$,
$(1,4),(2,4),(1,5),(1,6),(2,6),(3,6)\}$
Here, $(x, x) \in R \forall x \in B \Rightarrow R$ is reflexive
$(1,2) \in R$ but $(2,1) \notin R \Rightarrow R$ is not symmetric
Clearly, R is transitive also.
(ii) (a): Here, $n(A)=2$ and $n(B)=6$
\therefore Total no. of functions from A to $B=6 \times 6=6^{2}$
(iii) (d) : R is not reflexive as $(1,1),(3,3),(4,4),(6,6) \notin R$. R is not symmetric as $(1,2) \in R$ but $(2,1) \notin R$.
R is not transitive as $(1,3) \in R$ and $(3,4) \in R$ but $(1,4) \notin R$.
(iv) (d) : We have, $n(A)=2, n(B)=6$

No. of relations from A to $B=2^{n(A) \times n(B)}$

$$
=2^{2 \times 6}=2^{12}
$$

(v) (b) : $(x, x) \in R \forall x \in B$
$\therefore \quad R$ is reflexive.
$(1,2) \in R$ but $(2,1) \notin R \Rightarrow R$ is not symmetric
Also, R is transitive.
14. (i) Since, $P=\{A, B, C, D\}$ and $Q=\{1,2,3,4,5,6\}$
$\therefore \quad n(P)=4$ and $n(Q)=6$
Thus, number of one-one functions from P to $Q={ }^{6} P_{4}$
$=\frac{6!}{(6-4)!}=6 \times 5 \times 4 \times 3=360$
(ii) The number of onto functions from Q to P
$=\sum_{r=1}^{n}(-1)^{n-r} \cdot{ }^{n} C_{r} r^{m}$
$=\sum_{r=1}^{4}(-1)^{4-r} \cdot{ }^{4} C_{r} r^{6}$
[Here $n=4$ and $m=6$]
$=(-1)^{3} \cdot{ }^{4} C_{1}(1)^{6}+(-1)^{2} \cdot{ }^{4} C_{2}(2)^{6}+(-1) \cdot{ }^{4} C_{3}(3)^{6}+(-1)^{0} \cdot{ }^{4} C_{4}(4)^{6}$
$=-4+6(2)^{6}-4(3)^{6}+(4)^{6}$
$=-4+384-2916+4096=1560$
15. Total number of relations that can be defined on set A consisting of 3 elements to itself $=2^{n^{2}}$

$$
=2^{3^{2}}=2^{9}=512
$$

Number of reflexive relations on set A having 3 elements

$$
=2^{3(3-1)}=2^{6}=64
$$

16. We have, $f(x)=\cos x \forall x \in R$

Now, $f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0$
Also, $f\left(-\frac{\pi}{2}\right)=\cos \left(-\frac{\pi}{2}\right)=0$
Since, $f\left(\frac{\pi}{2}\right)=f\left(-\frac{\pi}{2}\right)$ but $\frac{\pi}{2} \neq-\frac{\pi}{2} \quad \therefore f$ is not one-one.
Since, $-1 \leq \cos x \leq 1, \forall x \in R$. So there is no pre-image for real numbers, which does not belongs to the interval $[-1,1]=$ range of $\cos x$.
$\therefore \quad f$ is not onto.

OR

If $f: A \rightarrow B$ is such that $y \in B$, then
$f^{-1}(y)=\{x \in A: f(x)=y\}$
In other words, $f^{-1}(y)$ is the set of pre-images of y.
Let $f^{-1}(17)=x$
$\Rightarrow f(x)=17 \Rightarrow x^{2}+1=17$
$\Rightarrow x^{2}=17-1=16 \Rightarrow x= \pm 4$
$\therefore \quad f^{-1}(17)=\{-4,4\}$
Again, let $f^{-1}(-3)=x$, then

$$
f(x)=-3 \Rightarrow x^{2}+1=-3
$$

$\Rightarrow x^{2}=-4 \Rightarrow x=\sqrt{-4}$
Clearly no solution is available in R.
So, $f^{-1}(-3)=\phi$.
17. Here, $f: R^{+} \rightarrow R^{+}$defined by $f(x)=\frac{1}{2 x}$

One-One : let $x_{1}, x_{2} \in R^{+}$(domain)
Now, $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{1}{2 x_{1}}=\frac{1}{2 x_{2}}$
$\Rightarrow \quad 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$
$\therefore \quad f$ is one-one
Let $y \in R^{+}$(co-domain) be any arbitrary element then $y \neq 0$
Let $y=f(x)$
$\Rightarrow y=\frac{1}{2 x} \Rightarrow x=\frac{1}{2 y} \in R^{+}$
f is onto. Hence, f is bijective where $\frac{1}{2 y}$ is non zero real number. Hence, each element of co-dominan $\left(R^{+}\right)$is the image of some element of domain $\left(R^{+}\right)$.

OR

We have, $R=\{(x, y): x, y \in N, x+4 y=10\}$
$\therefore \quad R=\{(2,2),(6,1)\}$
Reflexive : Let $x \in N$ be any element.
Since $(x, x) \notin R, \therefore R$ is not reflexive.
Symmetric : Since $(6,1) \in R$ but $(1,6) \notin R$
$\therefore \quad R$ is not symmetric.
Transitive : Let $x, y, z \in N$, then $(x, y) \in R$ and $(y, z) \in R$

$$
\begin{equation*}
(x, y) \in R \Rightarrow x+4 y=10 \tag{i}
\end{equation*}
$$

and $(y, z) \in R \Rightarrow y+4 z=10$
From (i) and (ii), $x+4(10-4 z)=10$
$\Rightarrow x+40-16 z=10 \Rightarrow x-16 z=-30$
$\therefore \quad(x, z) \notin R$
Thus, R is none of reflexive, symmetric and transitive.
18. Here, $A=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $B=[-1,1]$

Also $f: A \rightarrow B$ such that $f(x)=\sin x$
$\therefore \quad f$ is one-one.
$\because f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \sin x_{1}=\sin x_{2}$
$\Rightarrow \quad x_{1}=x_{2}$

$$
\left[\because \quad x_{1}, x_{2} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right]
$$

Also, range $(f)=[-1,1]=B$ so, f is onto.
Thus, f is one-one and onto and hence bijective.
19. Reflexivity : Let $a \in X$, then
$f(a)=f(a) \Rightarrow(a, a) \in R \therefore R$ is reflexive.

Symmetry : Let $(a, b) \in R$, then

$$
(a, b) \in R \Rightarrow f(a)=f(b)
$$

$\Rightarrow f(b)=f(a) \Rightarrow(b, a) \in R . \quad \therefore R$ is symmetric.
Transitive : Let $(a, b) \in R$ and $(b, c) \in R$
$(a, b) \in R \Rightarrow f(a)=f(b)$
and $(b, c) \in R \Rightarrow f(b)=f(c)$
$\Rightarrow f(a)=f(c) \Rightarrow(a, c) \in R$
$\Rightarrow \quad R$ is transitive.
Hence, R is an equivalence relation.
20. We have given, $A=\{1,2,3,4\}$
(i) Consider, $R_{1}=\{(1,1),(1,2),(2,3),(2,2),(1,3)$, $(3,3)\}$
As, $(1,1),(2,2),(3,3)$ lie in R_{1}
$\therefore \quad R_{1}$ is reflexive.
Also, $(1,2) \in R_{1},(2,3) \in R_{1} \Rightarrow(1,3) \in R_{1}$
So, R_{1} is also transitive.
Since, $(2,3) \in R_{1}$ but $(3,2) \notin R_{1}$.
So, it is not symmetric.
(ii) Consider, $R_{2}=\{(1,2),(2,1)\}$

As, $(1,2) \in R_{2}$ and $(2,1) \in R_{2}$

So, it is symmetric but it is neither reflexive nor transitive.
(iii) Consider, $R_{3}=\{(1,2),(2,1),(1,1),(2,2),(3,3),(1,3)$, $(3,1),(2,3),(3,2)\}$
Hence, R_{3} is reflexive, symmetric and transitive.
21. (i) Here, $x=\frac{1}{2}$, which is rational and satisfying first condition. $\quad \therefore f\left(\frac{1}{2}\right)=1$
(ii) Here, $x=\sqrt{2}$, which is irrational and satisfying second condition. $\therefore f(\sqrt{2})=-1$
(iii) Here, $x=\pi$, which is irrational and satisfying second condition. $\therefore f(\pi)=-1$
(iv) Here, $x=2+\sqrt{3}$, which is irrational and satisfying second condition. $\therefore f(2+\sqrt{3})=-1$
Clearly, $f(x)$ is many one as $f(x)=-1$ for $x=\sqrt{2}$ and $2+\sqrt{3}$. And $f(x)$ takes values only 1 and -1 .
Range of $f(x) \subset$ co-domain.
Here, $f(x)$ does not take all the values of the co-domain.. $\therefore \quad f(x)$ is not onto.

$m \neq G$
 BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information

