Relations and Functions

SOLUTIONS

(c) : To find the equivalence class of (3, 2), we will 1. take element *a* as multiple of 3 and element *b* as multiple of 2.

Then, the ordered pairs are

EXAM

DRILL

{(3, 2), (6, 4), (9, 6), (12, 8), (15, 10), (18, 12)} Hence, required number of pairs are 6.

(d): Given function $f: R \to R$ defined by 2.

$$f(x) = \frac{x^2 - 8}{x^2 + 2}$$

We observe that for negative and positive values of *x*, we get same value of f(x).

Hence, f(x) is not one-one.

Also,
$$y = f(x) \Rightarrow y = \frac{x^2 - 8}{x^2 + 2} \Rightarrow yx^2 + 2y = x^2 - 8$$

 $\Rightarrow x = \sqrt{\frac{2y + 8}{1 - y}}$

For y = 1, we can't define *x*, hence *f* is not onto.

3. (c) : We know that if A and B are two non-empty sets containing m and n elements respectively, then number of one-one function from A to B =

 $\begin{cases} {}^{n}P_{m}, \text{ if } n \ge m \\ 0, \text{ if } n = m \end{cases}$

Here, n = 8 and m = 7

- \therefore Required number of one-one mapping = ${}^{8}P_{7}$
- $=\frac{8!}{(8-7)!}=8\times7\times6\times5\times4\times3\times2\times1=40320$

4. (c) : We know that if A and B are two non-empty sets containing m and n elements respectively, then

number of bijections from A to $B = \begin{cases} n!, \text{ if } m = n \\ 0, \text{ if } m \neq n \end{cases}$

Here m = n = 3

- Required number of bijections = $3! = 3 \times 2 = 6$. *.*..
- (d): Given, $f(x) = \sin x \forall x \in R$ 5.

As, $\sin x \in [-1, 1]$: $f(x) \in [-1, 1]$ As f is onto

- \therefore $B = \{x : x \in [-1, 1]\}$
- Given, $R = \{(a, a^3) : a \text{ is a prime number less than } 10\}$. 6.
- \Rightarrow R = {(2, 8), (3, 27), (5, 125), (7, 343)}

Hence, range of *R* = {8, 27, 125, 343}.

For two non empty sets *A* and *B* containing *m* and *n* 7. elements, number of onto functions is

$$\sum_{r=1}^{n} (-1)^{n-r} {}^{n}C_{r} r^{m}, \text{ if } m \ge n$$

Here, m = 4 and n = 2

Required number of onto functions •

$$= \sum_{r=1}^{2} (-1)^{2-r} {}^{2}C_{r} r^{4} = (-1)^{1} {}^{2}C_{1}(1)^{4} + (-1)^{0} {}^{2}C_{2}(2)^{4}$$
$$= -\frac{2!}{1!(2-1)!} + 1 {}^{2}\frac{2!}{2!(2-2)!} 2^{4} = -2 + 16 = 14.$$

- Since the set contains 4 elements. 8.
- Total number of reflexive relations = $2^{4(4-1)} = 2^{12}$. ÷.
- We have, $R = \{(1, 2), (2, 1)\}$ defined on set $\{1, 2, 3\}$. 9
- As, $(1, 2) \in \mathbb{R}$, $(2, 1) \in \mathbb{R}$ but $(1, 1) \notin \mathbb{R}$.
- *R* is not transitive.

Since, every element of *A* has its unique image in *B*. \therefore *f* is one-one.

10. Let $x_1, x_2 \in [-1, 1]$ such that $f(x_1) = f(x_2)$

$$\Rightarrow \quad \frac{x_1}{x_1 + 2} = \frac{x_2}{x_2 + 2}$$
$$\Rightarrow \quad x_1 x_2 + 2x_1 = x_1 x_2 + 2x_2 \Rightarrow x_1 = x_2$$

Hence, *f* is one-one.

- **11.** Given, $A = \{a, b, c\}$ and *R* be a reflexive relation on *A*. ÷. $R = \{(a, a), (b, b), (c, c)\}.$
- **12.** Here, $f: R \to R$ given by $f(x) = x + \sqrt{x^2}$ $= x \pm x = 0$ or 2x

Now, f(0) = 0 and $f(-1) = -1 + \sqrt{(-1)^2} = -1 + 1 = 0$ So, image of 0 and -1 is 0.

- \therefore *f* is many-one function.
- **13.** (i) (a) : $R = \{(x, y) : y \text{ is divisible by } x\}$
- $= \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (1, 3), \}$
- (1, 4), (2, 4), (1, 5), (1, 6), (2, 6), (3, 6)
- Here, $(x, x) \in R \forall x \in B \Rightarrow R$ is reflexive
- $(1, 2) \in R$ but $(2, 1) \notin R \Rightarrow R$ is not symmetric

Clearly, *R* is transitive also.

2

MtG 100 PERCENT Mathematics Class-12

(ii) (a): Here, n(A) = 2 and n(B) = 6Total no. of functions from *A* to $B = 6 \times 6 = 6^2$ *:*.. (iii) (d): *R* is not reflexive as (1, 1), (3, 3), (4, 4), $(6, 6) \notin R$. *R* is not symmetric as $(1, 2) \in R$ but $(2, 1) \notin R$. *R* is not transitive as $(1, 3) \in R$ and $(3, 4) \in R$ but $(1, 4) \notin R$. (iv) (d): We have, n(A) = 2, n(B) = 6No. of relations from *A* to $B = 2^{n(A) \times n(B)}$ $= 2^{2 \times 6} = 2^{12}$ (v) (b): $(x, x) \in R \forall x \in B$ \therefore *R* is reflexive. $(1, 2) \in R$ but $(2, 1) \notin R \Rightarrow R$ is not symmetric Also, *R* is transitive. **14.** (i) Since, $P = \{A, B, C, D\}$ and $Q = \{1, 2, 3, 4, 5, 6\}$ n(P) = 4 and n(Q) = 6*.*. Thus, number of one-one functions from *P* to $Q = {}^{6}P_{4}$ $=\frac{6!}{(6-4)!}=6 \times 5 \times 4 \times 3 = 360$ (ii) The number of onto functions from *Q* to *P* $=\sum_{r=1}^{n}\left(-1\right)^{n-r}\cdot^{n}C_{r}r^{m}$ $=\sum_{1}^{4}(-1)^{4-r}\cdot {}^{4}C_{r}r^{6}$ [Here *n* = 4 and *m* = 6] $= (-1)^{3} \cdot {}^{4}C_{1}(1)^{6} + (-1)^{2} \cdot {}^{4}C_{2}(2)^{6} + (-1) \cdot {}^{4}C_{3}(3)^{6} + (-1)^{0} \cdot {}^{4}C_{4}(4)^{6}$ $= -4 + 6(2)^6 - 4(3)^6 + (4)^6$ = -4 + 384 - 2916 + 4096 = 156015. Total number of relations that can be defined on set A consisting of 3 elements to itself = 2^{n^2} $= 2^{3^2} = 2^9 = 512$ Number of reflexive relations on set A having 3 elements $= 2^{3(3-1)} = 2^6 = 64$ **16.** We have, $f(x) = \cos x \forall x \in R$ Now, $f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$ Also, $f\left(-\frac{\pi}{2}\right) = \cos\left(-\frac{\pi}{2}\right) = 0$

Since, $f\left(\frac{\pi}{2}\right) = f\left(-\frac{\pi}{2}\right)$ but $\frac{\pi}{2} \neq -\frac{\pi}{2}$ \therefore *f* is not one-one. Since, $-1 \le \cos x \le 1$, $\forall x \in \mathbb{R}$. So there is no pre-image for

real numbers, which does not belongs to the interval [-1, 1] = range of cosx.

 \therefore *f* is not onto.

OR

If $f: A \to B$ is such that $y \in B$, then $f^{-1}(y) = \{x \in A : f(x) = y\}$ In other words, $f^{-1}(y)$ is the set of pre-images of y. Let $f^{-1}(17) = x$ $\Rightarrow f(x) = 17 \Rightarrow x^2 + 1 = 17$ $\Rightarrow x^{2} = 17 - 1 = 16 \Rightarrow x = \pm 4$ $\therefore f^{-1}(17) = \{-4, 4\}$ Again, let $f^{-1}(-3) = x$, then $f(x) = -3 \Rightarrow x^{2} + 1 = -3$ $\Rightarrow x^{2} = -4 \Rightarrow x = \sqrt{-4}$ Clearly no solution is available in *R*. So, $f^{-1}(-3) = \phi$. **17.** Here, $f: R^{+} \rightarrow R^{+}$ defined by $f(x) = \frac{1}{2x}$ **One-One**: let $x_{1}, x_{2} \in R^{+}$ (domain) Now, $f(x_{1}) = f(x_{2}) \Rightarrow \frac{1}{2x_{1}} = \frac{1}{2x_{2}}$ $\Rightarrow 2x_{1} = 2x_{2} \Rightarrow x_{1} = x_{2}$ $\therefore f \text{ is one-one}$ Let $y \in R^{+}$ (co-domain) be any arbitrary element then $y \neq 0$ Let y = f(x)

$$\Rightarrow \quad y = \frac{1}{2x} \quad \Rightarrow x = \frac{1}{2y} \in R^+$$

f is onto. Hence, *f* is bijective where $\frac{1}{2y}$ is non zero real number. Hence, each element of co-dominan (*R*⁺) is the

image of some element of domain (R^+) .

OR

We have, $R = \{(x, y) : x, y \in N, x + 4y = 10\}$ $R = \{(2, 2), (6, 1)\}$ **Reflexive :** Let $x \in N$ be any element. Since $(x, x) \notin R$, \therefore *R* is not reflexive. **Symmetric :** Since $(6, 1) \in R$ but $(1, 6) \notin R$ \therefore *R* is not symmetric. **Transitive :** Let $x, y, z \in N$, then $(x, y) \in R$ and $(y, z) \in R$ $(x, y) \in R \implies x + 4y = 10$... (i) and $(y, z) \in R \implies y + 4z = 10$... (ii) From (i) and (ii), x + 4(10 - 4z) = 10 \Rightarrow x + 40 - 16z = 10 \Rightarrow x - 16z = -30 \therefore $(x, z) \notin R$ Thus, *R* is none of reflexive, symmetric and transitive.

18. Here,
$$A = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 and $B = [-1, 1]$

Also $f: A \to B$ such that $f(x) = \sin x$

 \therefore *f* is one-one.

$$\therefore \quad f(x_1) = f(x_2) \Longrightarrow \sin x_1 = \sin x_2$$

Also, range (f) = [-1, 1] = B so, f is onto. Thus, f is one-one and onto and hence bijective.

19. Reflexivity : Let $a \in X$, then

 $f(a) = f(a) \Rightarrow (a, a) \in R \therefore R$ is reflexive.

Symmetry : Let $(a, b) \in R$, then $(a, b) \in R \Longrightarrow f(a) = f(b)$ \Rightarrow $f(b) = f(a) \Rightarrow (b, a) \in R$. \therefore R is symmetric. **Transitive :** Let $(a, b) \in R$ and $(b, c) \in R$ $(a, b) \in R \implies f(a) = f(b)$ and $(b, c) \in R \Longrightarrow f(b) = f(c)$ $\Rightarrow f(a) = f(c) \Rightarrow (a, c) \in \mathbb{R}$ \Rightarrow *R* is transitive. Hence, *R* is an equivalence relation. **20.** We have given, $A = \{1, 2, 3, 4\}$ (i) Consider, $R_1 = \{(1, 1), (1, 2), (2, 3), (2, 2), (1, 3), (2, 2), (1, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3, 3),$ (3, 3)As, (1, 1), (2, 2), (3, 3) lie in *R*₁ \therefore R_1 is reflexive. Also, $(1, 2) \in R_1$, $(2, 3) \in R_1 \implies (1, 3) \in R_1$ So, R_1 is also transitive. Since, $(2, 3) \in R_1$ but $(3, 2) \notin R_1$. So, it is not symmetric. (ii) Consider, $R_2 = \{(1, 2), (2, 1)\}$ As, $(1, 2) \in R_2$ and $(2, 1) \in R_2$

So, it is symmetric but it is neither reflexive nor transitive. (iii) Consider, $R_3 = \{(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (1, 3), (3, 1), (2, 3), (3, 2)\}$

Hence, R_3 is reflexive, symmetric and transitive.

21. (i) Here, $x = \frac{1}{2}$, which is rational and satisfying first condition. $\therefore f\left(\frac{1}{2}\right) = 1$

(ii) Here, $x = \sqrt{2}$, which is irrational and satisfying second condition. $\therefore f(\sqrt{2}) = -1$

(iii) Here, $x = \pi$, which is irrational and satisfying second condition. $\therefore f(\pi) = -1$

(iv) Here, $x = 2 + \sqrt{3}$, which is irrational and satisfying second condition. $\therefore f(2 + \sqrt{3}) = -1$

Clearly, f(x) is many one as f(x) = -1 for $x = \sqrt{2}$ and $2 + \sqrt{3}$. And f(x) takes values only 1 and -1.

Range of $f(x) \subset$ co-domain.

Here, f(x) does not take all the values of the co-domain.. \therefore f(x) is not onto.

MtG BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information