Application of Derivatives

1. (d): Area of circle, $A=\pi r^{2}$

Differentiating (i) w.r.t. r, we get

$$
\begin{align*}
& \frac{d A}{d r}=2 \pi r \tag{i}\\
\therefore \quad & \left(\frac{d A}{d r}\right)_{r=2}=2 \pi(2)=4 \pi
\end{align*}
$$

2. (d) : We have, $y=8 x^{3}-60 x^{2}+144 x+27$

Differentiating w.r.t. x, we get
$\frac{d y}{d x}=24 x^{2}-120 x+144=24\left(x^{2}-5 x+6\right)=24(x-3)(x-2)$
For strictly decreasing, $\frac{d y}{d x}<0$
$\Rightarrow(x-3)(x-2)<0 \Rightarrow x \in(2,3)$
3. (d): $f(x)=\cot ^{-1} x+x$
$\Rightarrow f^{\prime}(x)=\frac{-1}{1+x^{2}}+1 \Rightarrow f^{\prime}(x)=\frac{x^{2}}{1+x^{2}} \geq 0$, for $x \in R$
$\therefore \quad f(x)$ is increasing on $(-\infty, \infty)$.
4. (b) : Let $y=\left(\frac{1}{x}\right)^{2 x^{2}} \Rightarrow \log y=2 x^{2} \log \frac{1}{x}$

On differentiating w.r.t. x, we get

$$
\frac{1}{y} \cdot \frac{d y}{d x}=4 x \log \frac{1}{x}+2 x^{2}\left(-\frac{1}{x}\right)
$$

For maxima or minima
$\frac{d y}{d x}=0 \Rightarrow-4 x \log x-2 x=0 \Rightarrow 2 \log x+1=0 \Rightarrow x=e^{-1 / 2}$
Now, $\left[\frac{d^{2} y}{d x^{2}}\right]_{x=e^{-1 / 2}}<0$
$\therefore \quad y_{\text {max }}=e^{1 / e}$
5. (c) : Let the sides of an equilateral triangle be $y \mathrm{~cm}$ then area of equilateral triangle is
$A=\frac{\sqrt{3}}{4} y^{2}$
We have, $\frac{d y}{d t}=2 \mathrm{~cm} / \mathrm{s}$
On differentiating (i) with respect to t, we get

$$
\begin{aligned}
\frac{d A}{d t} & =\frac{\sqrt{3}}{4} \cdot 2 y \cdot \frac{d y}{d t} \\
& =\frac{\sqrt{3}}{4} \cdot 2 \cdot 10 \cdot 2
\end{aligned}
$$

$$
\left[\because y=10 \text { and } \frac{d y}{d t}=2\right]
$$

6. (d) : We have, $f(x)=2 x+\cos x$
$\therefore \quad f^{\prime}(x)=2+(-\sin x)=2-\sin x$
$\therefore \quad f^{\prime}(x)>0, \forall x$
$(\because-1 \leq \sin x \leq 1 \forall x \in R)$
Therefore, $f(x)$ is an increasing function.
7. (c) : Let $f(x)=\cos x$, for $x \in(0, \pi / 2)$
$\Rightarrow f^{\prime}(x)=-\sin x$
$\because \quad f^{\prime}(x)<0$ in $\left(0, \frac{\pi}{2}\right)$
Therefore, $f(x)=\cos x$ is decreasing in $\left(0, \frac{\pi}{2}\right)$
8. (d): We have, $y=a \log x+b x^{2}+x$

$$
\begin{align*}
\therefore & \frac{d y}{d x}=\frac{a}{x}+2 b x+1 \\
& \left(\frac{d y}{d x}\right)_{x=-1}=0 \Rightarrow a+2 b=1 \tag{i}
\end{align*}
$$

and $\left(\frac{d y}{d x}\right)_{x=2}=0 \Rightarrow a+8 b=-2$
Solving (i) \& (ii), we get

$$
a=2, b=-1 / 2
$$

9. If a function f has a local maximum at $x=c$ and $f^{\prime \prime}(c)<0$, then $f^{\prime}(c)$ is equal to 0 .
10. The function $f(x)=x^{3}$ is a strictly increasing function. $\left[\because f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2}>0\right.$. Thus $f(x)$ is strictly increasing $]$.
11. (c) : $P(x)>0$
$P^{\prime}(x)=2 a_{1} x+4 a_{2} x^{3}+\ldots=2 x\left(a_{1}+2 a_{2} x^{2}+\ldots\right)$
$P^{\prime}(x)=0 \Rightarrow x=0$, since the second factor is positive.
$\therefore \quad P(x)$ has minimum at $x=0$ and $P_{\min }=a_{0}$.
12. Here, $f(x)=\sin x-b x+c$
$\therefore \quad f^{\prime}(x)=\cos x-b$
Now, $f(x)$ is decreasing on R if $f^{\prime}(x) \leq 0$, for all $x \in R$
$\Rightarrow \cos x-b \leq 0, x \in R \Rightarrow \cos x \leq b, x \in R$
$\Rightarrow \quad b \geq 1$

OR

Let P be the perimeter of the circle.
$\therefore \quad P=2 \pi r$
$\Rightarrow \quad \frac{d P}{d r}=2 \pi \Rightarrow\left(\frac{d P}{d r}\right)_{r=6}=2 \pi$
13. (i) (c): Let S be the sum of volume of parallelopiped and sphere, then
$S=x(2 x)\left(\frac{x}{3}\right)+\frac{4}{3} \pi r^{3}=\frac{2 x^{3}}{3}+\frac{4}{3} \pi r^{3}$
(ii) (a) : Since, sum of surface area of box and sphere is given to be constant k^{2}.
$\therefore \quad 2\left(x \times 2 x+2 x \times \frac{x}{3}+\frac{x}{3} \times x\right)+4 \pi r^{2}=k^{2}$
$\Rightarrow 6 x^{2}+4 \pi r^{2}=k^{2}$
$\Rightarrow x^{2}=\frac{k^{2}-4 \pi r^{2}}{6} \Rightarrow x=\sqrt{\frac{k^{2}-4 \pi r^{2}}{6}}$
(iii) (b) : From (1) and (2), we get

$$
\begin{aligned}
& S=\frac{2}{3}\left(\frac{k^{2}-4 \pi r^{2}}{6}\right)^{3 / 2}+\frac{4}{3} \pi r^{3} \\
& =\frac{2}{3 \times 6 \sqrt{6}}\left(k^{2}-4 \pi r^{2}\right)^{3 / 2}+\frac{4}{3} \pi r^{3} \\
& \Rightarrow \frac{d S}{d r}=\frac{1}{9 \sqrt{6}} \frac{3}{2}\left(k^{2}-4 \pi r^{2}\right)^{1 / 2}(-8 \pi r)+4 \pi r^{2} \\
& =4 \pi r\left[r-\frac{1}{3 \sqrt{6}} \sqrt{k^{2}-4 \pi r^{2}}\right]
\end{aligned}
$$

For maximum/minimum, $\frac{d S}{d r}=0$

$$
\begin{align*}
& \Rightarrow \frac{-4 \pi r}{3 \sqrt{6}} \sqrt{k^{2}-4 \pi r^{2}}=-4 \pi r^{2} \\
& \Rightarrow k^{2}-4 \pi r^{2}=54 r^{2} \\
& \Rightarrow r^{2}=\frac{k^{2}}{54+4 \pi} \Rightarrow r=\sqrt{\frac{k^{2}}{54+4 \pi}} \tag{3}
\end{align*}
$$

(iv) (d): Since, $x^{2}=\frac{k^{2}-4 \pi r^{2}}{6}=\frac{1}{6}\left[k^{2}-4 \pi\left(\frac{k^{2}}{54+4 \pi}\right)\right]$ [From (2) and (3)]
$=\frac{9 k^{2}}{54+4 \pi}=9\left(\frac{k^{2}}{54+4 \pi}\right)=9 r^{2}=(3 r)^{2}$
$\Rightarrow \quad x=3 r$
(v) (c) : Minimum value of S is given by
$\frac{2}{3}(3 r)^{3}+\frac{4}{3} \pi r^{3}$
$=18 r^{3}+\frac{4}{3} \pi r^{3}=\left(18+\frac{4}{3} \pi\right) r^{3}$
$=\left(18+\frac{4}{3} \pi\right)\left(\frac{k^{2}}{54+4 \pi}\right)^{3 / 2}$
$=\frac{1}{3} \frac{k^{3}}{(54+4 \pi)^{1 / 2}}$
14. (i): We have, $D=\sqrt{(x-3)^{2}+x^{4}}$
$\Rightarrow D^{2}=(x-3)^{2}+x^{4}$
Let $f(x)=(x-3)^{2}+x^{4}$
$f^{\prime}(x)=2(x-3)+4 x^{3}$
For maximum and minimum put $f^{\prime}(x)=0$.

$$
\begin{array}{ll}
\Rightarrow \quad 2(x-3)+4 x^{3}=0 \\
& 2 x^{3}+x-3=0 . \\
\Rightarrow \quad x=1
\end{array}
$$

Now, $f^{\prime \prime}(x)=2+12 x^{2}$
Clearly, $f^{\prime \prime}(x)$ at $x=1$ is greater than zero.
$\therefore \quad$ Value of x for which f will be minimum is 1 .
For $x=1, y=8$
Thus, the required position is $(1,8)$.
(ii) : David's Position is $y=x^{2}+7$
$\Rightarrow \frac{d y}{d x}=2 x$
David's position to be
parallel to x-axis, $\frac{d y}{d x}=0$

i.e., $2 x=0$
$\Rightarrow x=0$
$\therefore \quad y=7$
At $(0,7)$ David's position is parallel to x-axis
15. We have, $y=2 x^{3}-x-5$
$\Rightarrow \quad \frac{d y}{d x}=6 x^{2}-1$
(i) For strictly increasing, $\frac{d y}{d x}>0$
$\Rightarrow 6 x^{2}-1>0 \Rightarrow 6 x^{2}>1$
$\Rightarrow \quad x^{2}>\frac{1}{6}$
$\Rightarrow \quad x<\frac{-1}{\sqrt{6}}$ or $x>\frac{1}{\sqrt{6}}$
\therefore Given functions is strictly increasing in the interval $\left(-\infty, \frac{-1}{\sqrt{6}}\right) \cup\left(\frac{1}{\sqrt{6}}, \infty\right)$
(ii) For strictly decreasing, $\frac{d y}{d x}<0$
$\Rightarrow \quad 6 x^{2}-1<0$
$\Rightarrow \quad \frac{-1}{\sqrt{6}}<x<\frac{1}{\sqrt{6}}$
$\therefore \quad$ Given function is strictly decreasing in the interval $\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
16. Let $y=f(x)=x^{3}-6 x^{2}+12 x-8$. Then,

$$
\frac{d y}{d x}=3 x^{2}-12 x+12=3(x-2)^{2}
$$

For the critical points, $\frac{d y}{d x}=0$.
$\Rightarrow 3(x-2)^{2}=0 \Rightarrow x=2$.
$\therefore \quad \frac{d y}{d x}=3(x-2)^{2}>0$ for all $x \neq 2$.
Thus, $\frac{d y}{d x}$ does not change sign as x increases through $x=2$.
Hence, $x=2$ is neither a point of local maximum nor a point of local minimum. In fact, it is a point of inflection.
17. We have, $f(x)=e^{1 / x}$
$\therefore \quad f^{\prime}(x)=e^{1 / x}\left(\frac{-1}{x^{2}}\right)$
For all $x \neq 0, e^{1 / x}>0$ and $\frac{-1}{x^{2}}<0$
$\therefore \quad f^{\prime}(x)=(+)(-)=-$ ve for all $x \neq 0$
$\therefore \quad f(x)$ is a strictly decreasing function for $x \neq 0$.

OR

We have, $f(x)=x^{2}-[x]=x^{2}-1$

$$
[\because x \in[1,2) \Rightarrow 1 \leq x<2 \quad \therefore \quad[x]=1]
$$

$\therefore \quad f^{\prime}(x)=2 x$
Now, $x \in[1,2) \Rightarrow 1 \leq x<2 \Rightarrow 2 \leq 2 x<4 \Rightarrow 2 \leq f^{\prime}(x)<4$
Thus, $f^{\prime}(x)>0$ for all $x \in[1,2)$.
Hence, $f(x)$ is strictly increasing on $[1,2)$.
18. We have, $f(x)=\frac{2 x^{2}-1}{x^{4}}$

$$
\begin{aligned}
\Rightarrow & f^{\prime}(x)=\frac{x^{4} \cdot 4 x-\left(2 x^{2}-1\right) \cdot 4 x^{3}}{x^{8}} \\
& =\frac{-4 x^{5}+4 x^{3}}{x^{8}}=\frac{4 x^{3}\left(-x^{2}+1\right)}{x^{8}}
\end{aligned}
$$

For decreasing function, $f^{\prime}(x)<0$
$\Rightarrow \frac{4 x^{3}\left(1-x^{2}\right)}{x^{8}}<0 \Rightarrow-1<x<0$ or $x>1$
$\Rightarrow \quad x>1$
$(\because x>0)$
19. Given x and y are the sides of two squares such that $y=x-x^{2}$.
Let area of the first square $\left(A_{1}\right)=x^{2}$
and area of the second square $\left(A_{2}\right)=y^{2}=\left(x-x^{2}\right)^{2}$
Now, $\frac{d A_{1}}{d t}=\frac{d}{d t} x^{2}=2 x \cdot \frac{d x}{d t}$
Also, $\frac{d A_{2}}{d t}=\frac{d}{d t}\left(x-x^{2}\right)^{2}$

$$
=2\left(x-x^{2}\right)\left(\frac{d x}{d t}-2 x \cdot \frac{d x}{d t}\right)=\frac{d x}{d t}(1-2 x) 2\left(x-x^{2}\right)
$$

$\therefore \quad \frac{d A_{2}}{d A_{1}}=\frac{\left(d A_{2} / d t\right)}{\left(d A_{1} / d t\right)}=\frac{\frac{d x}{d t} \cdot(1-2 x)\left(2 x-2 x^{2}\right)}{2 x \cdot \frac{d x}{d t}}$
$=\frac{(1-2 x) 2 x(1-x)}{2 x}=(1-2 x)(1-x)$
$=2 x^{2}-3 x+1$
20. Let α be the semi-vertical angle of the water tank in the form of cone. Then,

$$
\tan \alpha=0.5=\frac{1}{2} \Rightarrow \frac{r}{h}=\frac{1}{2} \Rightarrow r=\frac{h}{2}
$$

Let $V A^{\prime} B^{\prime}$ be the water cone of volume V. Then,

$$
\frac{d V}{d t}=5 \mathrm{~m}^{3} / \mathrm{hr}
$$

(Given)
We have to find, $\frac{d h}{d t}$ when $h=4 \mathrm{~m}$.

$$
\begin{aligned}
& \text { Now, } V=\frac{1}{3} \pi r^{2} h \\
& \Rightarrow \quad V=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{\pi}{12} h^{3} \Rightarrow \frac{d V}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t} \\
& \Rightarrow \quad 5=\frac{\pi}{4} \times 4^{2} \times \frac{d h}{d t} \\
& \Rightarrow \quad \frac{d h}{d t}=\frac{5}{4 \pi}=\frac{5}{4} \times \frac{7}{22} \mathrm{~m} / \mathrm{h}=\frac{35}{88} \mathrm{~m} / \mathrm{h}
\end{aligned}
$$

Thus, the rate of change of water level is $\frac{35}{88} \mathrm{~m} / \mathrm{h}$.
21. We have, $f(x)=12 x^{4 / 3}-6 x^{1 / 3}$
$\therefore \quad f^{\prime}(x)=16 x^{1 / 3}-2 x^{-2 / 3}=\frac{2(8 x-1)}{x^{2 / 3}}$
For critical points, we must have $f^{\prime}(x)=0$.
$\therefore \quad f^{\prime}(x)=0 \Rightarrow \frac{2(8 x-1)}{x^{2 / 3}}=0 \Rightarrow x=\frac{1}{8}$
The values of $f(x)$ at critical points and at the end points of interval are:

$$
f(-1)=12+6=18, f\left(\frac{1}{8}\right)=-\frac{9}{4} \text { and } f(1)=6
$$

$\therefore \quad$ Absolute maximum $=18$ at $x=-1$ and absolute minimum $=-\frac{9}{4}$ at $x=\frac{1}{8}$.
22. Let $a \mathrm{~m}$ and $b \mathrm{~m}$ be the sides of the base of the tank.

$\therefore \quad$ Volume of the tank $=a \cdot b \cdot 3=75 \mathrm{~m}^{3}$ (given)
$\Rightarrow \quad a b=25 \Rightarrow b=\frac{25}{a}$
If C is the total cost in rupees, then
$C=a \times b \times 100+2 \times 3 \times a \times 50+2 \times 3 \times b \times 50$
$=100 a b+300(a+b)=100 \times 25+300\left(a+\frac{25}{a}\right)$
$\Rightarrow \quad C=2500+300\left(a+\frac{25}{a}\right)$
Differentiating w.r.t. a, we get
$\frac{d C}{d a}=300\left(1-\frac{25}{a^{2}}\right)$ and $\frac{d^{2} C}{d a^{2}}=300\left(0+\frac{25 \times 2}{a^{3}}\right)=\frac{300 \times 50}{a^{3}}$
For maximum or minimum cost,
$\frac{d C}{d a}=0 \Rightarrow 1-\frac{25}{a^{2}}=0 \Rightarrow a=5 \mathrm{~m}$
and from (i) $b=5 \mathrm{~m}$
At $a=5 ; \frac{d^{2} C}{d a^{2}}>0 \Rightarrow C$ is minimum.
Hence, the least cost of the tank is
$C=\left[2500+300\left(5+\frac{25}{5}\right)\right]=[2500+3000]=5500$.
23. Let $u=a x+b y$, where $x y=c^{2}$
$\Rightarrow u=a x+b\left(\frac{c^{2}}{x}\right)$
Differentiating (i) w.r.t. x, we get

$$
\frac{d u}{d x}=a-\frac{b c^{2}}{x^{2}} \text { and } \frac{d^{2} u}{d x^{2}}=\frac{2 b c^{2}}{x^{3}}
$$

For critical points, $\frac{d u}{d x}=0$
$\Rightarrow \quad \frac{a x^{2}-b c^{2}}{x^{2}}=0 \Rightarrow x^{2}=\frac{b c^{2}}{a}$
$\therefore x= \pm \sqrt{\frac{b}{a}} c$
At $x=\sqrt{\frac{b}{a}} c, \frac{d^{2} u}{d x^{2}}=2 b c^{2}\left(\sqrt{\frac{a}{b}} \times \frac{1}{c}\right)^{3}$

$$
=\frac{2 b c^{2}}{c^{3}}\left(\frac{a \sqrt{a}}{b \sqrt{b}}\right)=2 \frac{a}{c} \sqrt{\frac{a}{b}}>0
$$

$\Rightarrow u$ is minimum at $x=c \sqrt{\frac{b}{a}}$
At $x=-\sqrt{\frac{b}{a}} c, \frac{d^{2} u}{d x^{2}}=-2 b c^{2}\left(\sqrt{\frac{a}{b}} \times \frac{1}{c}\right)^{3}=-2 \frac{a}{c} \sqrt{\frac{a}{b}}<0$
$\Rightarrow \quad u$ is maximum at $x=-\sqrt{\frac{b}{a}} c$
The minimum value of u at $x=\sqrt{\frac{b}{a}} c$ is

$$
\begin{aligned}
u & =a\left(\sqrt{\frac{b}{a}} c\right)+b c^{2}\left(\sqrt{\frac{a}{b}} \times \frac{1}{c}\right) \\
& =c \sqrt{a b}+\sqrt{b a} c=2 c \sqrt{a b}
\end{aligned}
$$

24. Let V and S be the volume and the surface area of a closed cuboid of length $=x$ units, breadth $=x$ units and height $=y$ units respectively.
Then, $V=x^{2} y$
and $S=2\left(x^{2}+x y+x y\right)=2 x^{2}+4 x y$
$\Rightarrow \quad S=2 x^{2}+4 x\left(\frac{V}{x^{2}}\right)$
[From (i)]
$\Rightarrow \quad S=2 x^{2}+\frac{4 V}{x} \Rightarrow \frac{d S}{d x}=4 x-\frac{4 V}{x^{2}}$
For maximum or minimum of $S, \frac{d S}{d x}=0$
$\Rightarrow \frac{d S}{d x}=0 \Rightarrow 4 x-\frac{4 V}{x^{2}}=0 \Rightarrow V=x^{3}$
$\Rightarrow \quad x^{2} y=x^{3}$ $\left[\because V=x^{2} y\right]$
$\Rightarrow \quad x=y$
Differentiating (ii) with respect to x, we get

$$
\frac{d^{2} S}{d x^{2}}=4+\frac{8 V}{x^{3}}=4+\frac{8 x^{2} y}{x^{3}}=4+\frac{8 y}{x}
$$

$\Rightarrow \quad\left(\frac{d^{2} S}{d x^{2}}\right)_{y=x}=12>0$.
Thus, S is minimum when $x=y$.
25. Let two men start from the point C with velocity v each at the same time.
Also, $\angle B C A=45^{\circ}$

As, A and B are moving with same velocity, so they will cover same distance in same time.
So, $\triangle A B C$ is an isosceles triangle with $A C=B C$
Also, draw $C D \perp A B$
Let at any instant, the distance between them is $A B$
Consider $A C=B C=x$ and $A B=y$
In $\triangle A C D$ and $\triangle D C B$,

$$
\angle C A D=\angle C B D \quad[\because A C=B C]
$$

$\angle C D A=\angle C D B=90^{\circ}$
$\therefore \quad \angle A C D=\angle D C B$
or $\angle A C D=\frac{1}{2} \times \angle A C B$
$\Rightarrow \angle A C D=\frac{1}{2} \times 45^{\circ} \Rightarrow \angle A C D=\frac{\pi}{8}$
In $\triangle A C D, \sin \frac{\pi}{8}=\frac{A D}{A C}$

$$
\begin{aligned}
& \Rightarrow \quad \sin \frac{\pi}{8}=\frac{y / 2}{x} \quad[\because A D=y / 2] \\
& \Rightarrow y=2 x \cdot \sin \frac{\pi}{8}
\end{aligned}
$$

On differentiating both sides with respect to t, we get

$$
\begin{aligned}
\frac{d y}{d t} & =2 \cdot \sin \frac{\pi}{8} \cdot \frac{d x}{d t} \\
& =2 \cdot \sin \frac{\pi}{8} \cdot v \quad \quad\left[\because v=\frac{d x}{d t}\right] \\
& =2 v \cdot \frac{\sqrt{2-\sqrt{2}}}{2} \quad\left[\because \sin \frac{\pi}{8}=\frac{\sqrt{2-\sqrt{2}}}{2}\right] \\
& =\sqrt{2-\sqrt{2}} v \mathrm{unit} / \mathrm{s}
\end{aligned}
$$

which is the rate at which A and B are being separated. 26. Let $A B$ be the tower. Let at any time t, the man be at a distance of x metres from the tower $A B$ and let θ be the angle of elevation at that time. Then,

$$
\tan \theta=\frac{B C}{P C} \quad[\because B C=A B-A C]
$$

$\Rightarrow \quad \tan \theta=\frac{40}{x}$
$\Rightarrow x=40 \cot \theta$
$\Rightarrow \quad \frac{d x}{d t}=-40 \operatorname{cosec}^{2} \theta \frac{d \theta}{d t}$

We are given that $\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{sec}$.
$\therefore \quad 2=-40 \operatorname{cosec}^{2} \theta \frac{d \theta}{d t}$
$\Rightarrow \quad \frac{d \theta}{d t}=-\frac{1}{20 \operatorname{cosec}^{2} \theta}$
When $x=30$, we get

$$
\cot \theta=\frac{30}{40}=\frac{3}{4}
$$

[Putting $x=30$ in (i)]
$\therefore \quad \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta=1+\frac{9}{16}=\frac{25}{16}$
Substituting $\operatorname{cosec}^{2} \theta=\frac{25}{16}$ in (ii), we get

$$
\frac{d \theta}{d t}=-\frac{1}{20 \times \frac{25}{16}}=-\frac{4}{125} \text { radians } / \mathrm{sec}
$$

Thus, the angle of elevation of the top of tower is decreasing at the rate of $4 / 125$ radians $/ \mathrm{sec}$.
27. We have, $16 x^{2}+9 y^{2}=400$

If the ordinate decreases at the same rate at which the abscissa increases, then $\frac{d y}{d t}$ and $\frac{d x}{d t}$ are numerically equal and $\frac{d x}{d t}>0, \frac{d y}{d t}<0$.
$\therefore \quad \frac{d y}{d t}=-\frac{d x}{d t}$
Differentiating (i) w.r.t. ' t ', we get

$$
\begin{array}{rlr}
& 16 \cdot\left(2 x \frac{d x}{d t}\right)+9\left(2 y \frac{d y}{d t}\right)=0 & \\
\Rightarrow & 32 x \frac{d x}{d t}+18 y\left(\frac{-d x}{d t}\right)=0 & \text { [Using (ii)] } \\
\Rightarrow & (32 x-18 y) \frac{d x}{d t}=0 \Rightarrow 32 x-18 y=0 & {\left[\because \frac{d x}{d t}>0\right]} \\
\therefore & y=\frac{32}{18} x=\frac{16}{9} x & \\
\therefore & \text { From (i), 16x }+9\left(\frac{16}{9} x\right)^{2}=400 & \\
\Rightarrow & 16 x^{2}+\frac{256}{9} x^{2}=400 & \\
\Rightarrow & \frac{400}{9} x^{2}=400 \Rightarrow x^{2}=9 \Rightarrow x= \pm 3
\end{array}
$$

When $x=3, y=\frac{16}{9}(3)=\frac{16}{3}$
When $x=-3, y=\frac{16}{9}(-3)=\frac{-16}{3}$
Hence, the required points on the ellipse are $\left(3, \frac{16}{3}\right)$ and $\left(-3, \frac{-16}{3}\right)$.

$m \neq G$
 BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information

