Alternating Current

NCERT FOCUS

ANSWERS

Topic 1

1. (a) : The peak value of a.c. supply is given 300 V. $E_0 = 300 \text{ V}$ So, rms value of voltage $E_v = \frac{E_0}{\sqrt{2}} = \frac{300}{\sqrt{2}} = 150\sqrt{2} \text{ V} = 212.1 \text{ V}$ (b) Here $I_{y} = 10 \text{ A}$ Thus, peak current $I_0 = I_V \sqrt{2} = 10 \sqrt{2} A = 14.1 A$ 2. 60 µF Capacitive reactance $X_C = \frac{1}{2\pi fC}$ $X_{C} = \frac{1}{2 \times \pi \times 60 \times 60 \times 10^{-6}} = 44.2 \,\Omega$ The rms current is, $l_v = \frac{E_v}{X_c} = \frac{110}{44.2} = 2.5 \text{ A}$ L = 44 mH3. -00000 220 V. 50 Hz The rms current is $l_v = \frac{E_v}{X_1} = \frac{220}{2\pi \times 50 \times 44 \times 10^{-3}} = 15.9 \text{ A}$

Topic 2

1. (a) Condition for resonance is when applied frequency matches with natural frequency.

Resonant frequency
$$\omega_r = \frac{1}{\sqrt{LC}}$$

= $\frac{1}{\sqrt{5(80 \times 10^{-6})}} = 50 \text{ rad s}^{-1}$

(b) At resonance, impedance Z = Ras $X_L = X_C$ So, $Z = 40 \Omega$

Inductive reactance

 $X_{L} = 2\pi f L = 2\pi \times 50 \times 0.5 = 157 \ \Omega$ Impedance $Z = \sqrt{R^{2} + X_{L}^{2}} = \sqrt{(100)^{2} + (157)^{2}}$ $= 186.14 \ \Omega$

(a) Virtual current in the coil

$$I_{\nu} = \frac{E_{\nu}}{Z} = \frac{240}{186.14} = 1.29 \,\text{A}$$

Maximum current, $I_0 = I_V \sqrt{2} = 1.82 \text{ A}$

Phase lag, $\tan \phi = \frac{X_L}{R} = 1.57$ $\phi = \tan^{-1}(1.57) = 57.5^{\circ}$ or $\phi = 0.32 \pi$ radian Time lag, $t = \phi/\omega = 3.2$ ms 2

3.
$$100 \mu F_{R} = 40\Omega$$

$$110V, 60 Hz$$
Capacitive reactance, $X_{C} = \frac{1}{2\pi fC}$

$$X_{C} = \frac{1}{2 \times \pi \times 60 \times 100 \times 10^{-6}} = 26.54 \Omega$$
Impedance, $Z = \sqrt{R^{2} + X_{C}^{2}} = \sqrt{(40)^{2} + (26.54)^{2}} = 48 \Omega$
(a) Virtual current in the circuit
$$I_{v} = \frac{E_{v}}{Z} = \frac{110}{48} = 2.29 A$$
Maximum current $I_{0} = I_{v} \sqrt{2} = 3.24 A$

(b)

$$\begin{array}{c}
V_{c} & V_{R} \\
V_{c} & V_{c} \\
tan \phi = \frac{V_{C}}{V_{R}} = \frac{1}{\omega CR} \\
Phase lag \phi = tan^{-1} \left(\frac{1}{\omega CR}\right) = tan^{-1} \left(\frac{26.54}{40}\right) \\
\phi = 33.56^{\circ} = 0.186\pi \text{ radian} \\
Time lag t = \phi/\omega = \frac{0.18\pi}{2\pi(60)} = 1.5 \text{ ms} \\
\begin{array}{c}
L = 5H \\
V_{L} & 0 \\
\end{array}$$

$$I_{v} = 230 \text{ V}$$

Resonating angular frequency

$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5 \times 80 \times 10^{-6}}} = 50 \text{ rad s}^{-1}$$

 \therefore Resonance of *L* and *C* in parallel can be calculated

$$\frac{1}{X} = \frac{1}{X_L} = \frac{1}{X_C} = \frac{1}{\omega L} - \omega C$$

Impedance of R and X in parallel is given by

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \frac{1}{X^2}}$$

At resonating frequency of series LCR, $X_L = X_C$

MtG100PERCENT Physics Class-12

So,
$$\frac{1}{X} = \frac{1}{X_L} - \frac{1}{X_C} = 0$$

Thus, impedances Z = R and will be maximum. Hence, in parallel resonant circuit, current is minimum at resonant frequency. Current through circuit elements

$$I_{R} = \frac{E_{v}}{R} = \frac{230}{40} = 5.75 \text{ A}, \quad I_{C} = \frac{E_{v}}{X_{L}} = \frac{230}{\omega L} = \frac{230}{50 \times 5} = 0.92 \text{ A}$$
$$I_{C} = \frac{E_{v}}{X_{L}} = \frac{230}{(1/\omega C)}$$
$$= 230 \times 50 \times 80 \times 10^{-6} = 0.92 \text{ A}$$

Since, I_{1} and I_{c} are opposite in phase, so net current,

$$I_{v} = I_{R} + I_{L} + I_{C}$$

$$I_{v} = 5.75 + 0.92 \sqrt{2} \sin(\omega t - \pi/2) + 0.92 \sqrt{2}$$

$$\sin(\omega t + \pi/2)$$

$$I_{v} = 5.75 - 0.92 \sqrt{2} \cos \omega t + 0.92 \sqrt{2} \cos \omega t$$

$$I_{v} = 5.75 \text{ A}$$

Topic 3

1. (a) Here virtual a.c. voltage is 220 V at a frequency of 50 Hz. So, rms value of current

$$I_V = \frac{E_V}{R} = \frac{220}{100} = 2.2 \text{ A}$$

- (b) Power in complete cycle $P = E_{v_v} \cos \phi = E_{v_v} \cos 0^\circ$ $P = 2.2 \times 220 = 484 \text{ W}$
- **2.** Power in the complete cycle $P = E_{v_v} \cos(-\pi/2) = 0$.

Average power transferred to the circuit in one complete cycle at resonance

$$P = E_v I_v \cos \phi$$
$$P = E_v \frac{E_v}{Z} \cos \phi$$

At resonance Z = R, $\cos \phi = \cos 0^{\circ} = 1$

$$P = 200 \times \frac{200}{20} = 2000 \text{ W}$$

4.
$$L = 80 \text{ mH} \qquad 60 \text{ }\mu\text{F}$$

 $1 \text{ }\mu\text{F}$
 $230 \text{ V}, 50 \text{ Hz}$

(a) Inductive reactance, $X_{i} = 2\pi f L$ $X_{1} = 2\pi(50) \ 80 \times 10^{-3} = 25.12 \ \Omega$ Capacitive reactance, $X_C = \frac{1}{2\pi fC}$ $X_C = \frac{1}{2 \times 3.14 \times 50 \times 60 \times 10^{-6}} = 53.05 \,\Omega$ Impedance = $X_c - X_i$ = 53.05 - 25.12 = 27.93 Ω rms value of current, $I_v = \frac{E_v}{7} = \frac{230}{27.93} = 8.235 \text{ A}$ Peak value $I_0 = I_v \sqrt{2} = 11.644 \text{ A}$ (b) Potential drop across L, $V_1 = I_y X_1 = 206.68$ V Potential drop across C, $V_c = I_v X_c = 436.87 V$ (c) Average power transferred to inductor is zero, because of phase difference $\pi/2$. $P = E_{V_{V}} \cos \phi$ $\phi = \pi/2$, $\therefore P = 0$ (d) Average power transferred to capacitor is also zero, because of phase difference $\pi/2$. $P = E_U \cos \phi$ $\phi = \pi/2$, $\therefore P = 0$

(c) Total power absorbed by the circuit $P_{\text{Total}} = P_L + P_C = 0$

5. If the circuit has a resistance of 15 Ω , now it is *LCR* series resonant circuit.

Now the impedance,

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z = \sqrt{15^2 + (27.93)^2} = 31.7 \,\Omega$$

Virtual current,
$$I_v = \frac{E_v}{Z} = \frac{230}{31.7} = 7.26 \, A$$

Average power transferred to 'L',

$$P_{L} = I_{v}E_{v}\cos \pi/2 = 0$$
Average power transferred to 'C',

$$P_{C} = E_{v}J_{v}\cos \pi/2 = 0$$
Average power transferred to 'R',

$$P_{R} = V_{R}J_{v}\cos 0^{\circ}$$

$$P_{R} = (I_{v}R) I_{v} = I_{v}^{2}R = (7.26)^{2} \times 15 = 791 \text{ W}$$
6.

$$440 \text{ V} = I_{v}^{2}R = (7.26)^{2} \times 15 = 791 \text{ W}$$

$$6.$$

$$5 \text{ transformer} = 15 \text{ km}$$

$$800 \text{ kW}$$

$$800 \text{ kW}$$

Virtual a.c. in the time

$$I_V = \frac{P_{\text{output}}}{E_V} = \frac{800 \times 10^3}{40,000} = 20 \text{ A}$$

(a) Line power loss,
$$P_{loss} = \frac{l_v^2 R}{v} = (20)^2 \times 15$$

= 6 kW

(b) Power supplied by the plant

$$P_{\text{Total}} = P_{\text{Loss}} + P_{\text{output}} = 6 \text{ kW} + 800 \text{ kW}$$

 $= 806 \text{ kW}$

(c) Voltage drop in the line,

 $V = I_{R} = 20 \times 15 = 300 \text{ V}.$

Voltage output of step-up transformer at power station

= 40,000 + 300 = 40,300 V

So, the step up transformer at the power plant is 220 V - 40,300 V.

Power loss in earlier arrangement,

$$P_1 = \frac{600 \times 10^3}{1400 \times 10^3} \times 100 = 43\%$$

Power loss in this arrangement,

$$P_2 = \frac{6 \times 10^3}{806 \times 10^3} \times 100 = 0.74\%$$

So, by supply of electricity at higher voltage, 40,000 V instead by 4000 V the power loss is reduced greatly that is why the electric power is always transmitted at very high voltage.

MtG BEST SELLING BOOKS FOR CLASS 12

Visit www.mtg.in for complete information