



## Topic 1

1. Total mass of reactants = mass of sodium carbonate  
+ mass of acetic acid  
 $= 5.3 \text{ g} + 6 \text{ g} = 11.3 \text{ g}$

Total mass of products = mass of sodium acetate + mass of carbon dioxide + mass of water  
 $= 8.2 \text{ g} + 2.2 \text{ g} + 0.9 \text{ g} = 11.3 \text{ g}$

Thus, the mass of reactants is equal to the mass of products, therefore the observations are in agreement with the law of conservation of mass.

2. 1 g of hydrogen reacts with = 8 g of oxygen

$\therefore$  3 g of hydrogen reacts with  $= 8 \times 3 = 24 \text{ g}$  of oxygen

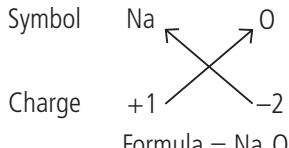
Thus, 24 g of oxygen gas would be required to react completely with 3 g of hydrogen gas.

3. The postulate that "atoms can neither be created nor destroyed in a chemical reaction" is the result of the law of conservation of mass.

4. The postulate that "A chemical compound always consists of the same elements combined together in the same proportion by mass" is the law of definite proportions.

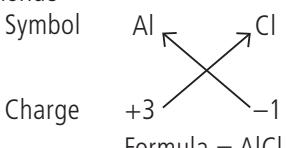
5. Atomic mass unit is defined as the mass unit equal to exactly one-twelfth ( $1/12^{\text{th}}$ ) of the mass of one atom of carbon-12. It is denoted by u (unified mass).

i.e.  $1 \text{ u} = 1.66 \times 10^{-24} \text{ g}$


6. (i) Aluminium sulphate (ii) Calcium chloride

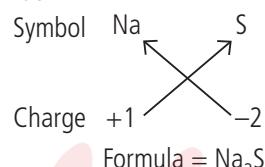
(iii) Potassium sulphate (iv) Potassium nitrate

(v) Calcium carbonate


7. It is not possible to see an atom with naked eye because of its extremely small size (atomic radius is of the order of  $10^{-10} \text{ m}$ ).

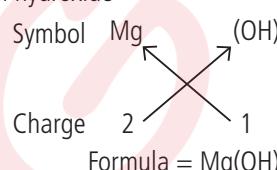
8. (i) Sodium oxide



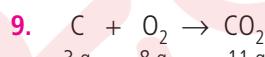

Formula =  $\text{Na}_2\text{O}$

(ii) Aluminium chloride




Formula =  $\text{AlCl}_3$

(iii) Sodium sulphide




Formula =  $\text{Na}_2\text{S}$

(iv) Magnesium hydroxide



Formula =  $\text{Mg}(\text{OH})_2$



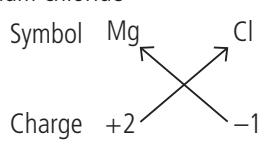
3 g 8 g 11 g

Total mass of reactants = mass of C + mass of  $\text{O}_2$   
 $= 3 + 8 = 11 \text{ g}$

Total mass of reactants = total mass of products

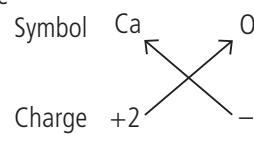
Hence, the law of conservation of mass is proved.

Further, it also shows that carbon dioxide contains carbon and oxygen in a fixed ratio by mass, which is 3 : 8. Thus, it also proves the law of constant proportions. 3 g of carbon must also combine with 8 g of oxygen only. This means that  $(50 - 8) = 42 \text{ g}$  of oxygen will remain unreacted.


10. (a) Quick lime is  $\text{CaO}$ . Elements present are calcium and oxygen.

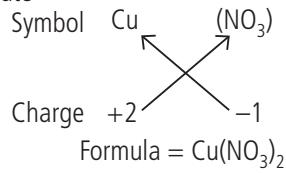
(b) Hydrogen bromide is  $\text{HBr}$ . Elements present are hydrogen and bromine.

(c) Baking powder is  $\text{NaHCO}_3$ . Elements present are sodium, hydrogen, carbon and oxygen.

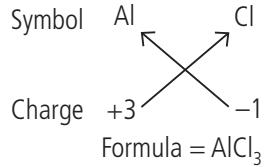

(d) Potassium sulphate is  $\text{K}_2\text{SO}_4$ . Elements present are potassium, sulphur and oxygen.

11. (a) Magnesium chloride

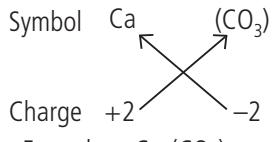



Formula =  $\text{MgCl}_2$

(b) Calcium oxide




Formula =  $\text{Ca}_2\text{O}_2$  or  $\text{CaO}$


(c) Copper nitrate



(d) Aluminium chloride



(e) Calcium carbonate



12. A polyatomic ion is a group of atoms carrying positive or negative charge.

e.g., Polyatomic ions

|                    | Symbol             |
|--------------------|--------------------|
| Ammonium           | $\text{NH}_4^+$    |
| Hydroxide          | $\text{OH}^-$      |
| Nitrate            | $\text{NO}_3^-$    |
| Hydrogen carbonate | $\text{HCO}_3^-$   |
| Sulphate           | $\text{SO}_4^{2-}$ |
| Sulphite           | $\text{SO}_3^{2-}$ |
| Phosphate          | $\text{PO}_4^{3-}$ |
| Carbonate          | $\text{CO}_3^{2-}$ |

## Topic 2

1. Molecular mass of  $\text{H}_2$  =  $2 \times$  atomic mass of H  
 $= 2 \times 1 \text{ u} = 2 \text{ u}$

Molecular mass of  $\text{O}_2$  =  $2 \times$  atomic mass of O  
 $= 2 \times 16 \text{ u} = 32 \text{ u}$

Molecular mass of  $\text{Cl}_2$  =  $2 \times$  atomic mass of Cl  
 $= 2 \times 35.5 \text{ u} = 71 \text{ u}$

Molecular mass of  $\text{CO}_2$  = atomic mass of C  
 $+ 2 \times$  atomic mass of O

$$= 12 + (2 \times 16) = (12 + 32) \text{ u} = 44 \text{ u}$$

Molecular mass of  $\text{CH}_4$  = atomic mass of C  
 $+ 4 \times$  atomic mass of H

$$= 12 + (4 \times 1) = (12 + 4) \text{ u} = 16 \text{ u}$$

Molecular mass of  $\text{C}_2\text{H}_6$

$$= 2 \times \text{atomic mass of C} + 6 \times \text{atomic mass of H}$$

$$= (2 \times 12 + 6 \times 1) \text{ u} = (24 + 6) \text{ u} = 30 \text{ u}$$

Molecular mass of  $\text{C}_2\text{H}_4$

$$= 2 \times \text{atomic mass of C} + 4 \times \text{atomic mass of H}$$

$$= (2 \times 12 + 4 \times 1) \text{ u} = (24 + 4) \text{ u} = 28 \text{ u}$$

Molecular mass of  $\text{NH}_3$  = atomic mass of N

$$+ 3 \times \text{atomic mass of H}$$

$$= (14 + 3 \times 1) \text{ u} = (14 + 3) \text{ u} = 17 \text{ u}$$

Molecular mass of  $\text{CH}_3\text{OH}$

$$= \text{atomic mass of C} + 3 \times \text{atomic mass of H}$$

$$+ \text{atomic mass of O} + \text{atomic mass of H}$$

$$= (12 + 3 \times 1 + 16 + 1) \text{ u} = (12 + 3 + 17) \text{ u} = 32 \text{ u}$$

2. Formula unit mass of  $\text{ZnO}$  =

$$\text{atomic mass of Zn} + \text{atomic mass of O}$$

$$= (65 + 16) \text{ u} = 81 \text{ u}$$

Formula unit mass of  $\text{Na}_2\text{O}$  =  $2 \times$  atomic mass of Na

$$+ \text{atomic mass of O}$$

$$= (2 \times 23 + 16) \text{ u} = 62 \text{ u}$$

Formula unit mass of  $\text{K}_2\text{CO}_3$  =  $2 \times$  atomic mass of K

$$+ \text{atomic mass of C} + 3 \times \text{atomic mass of O}$$

$$= (2 \times 39 + 12 + 3 \times 16) \text{ u} = (78 + 12 + 48) \text{ u} = 138 \text{ u}$$

3. (a) Molar mass of  $\text{C}_2\text{H}_2$

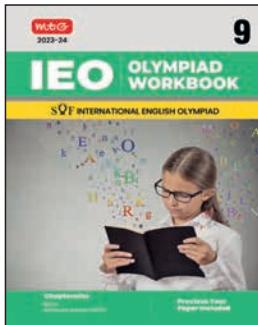
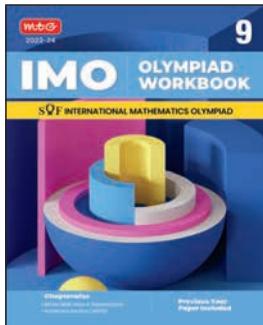
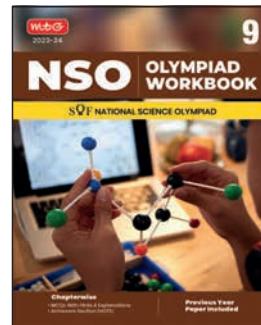
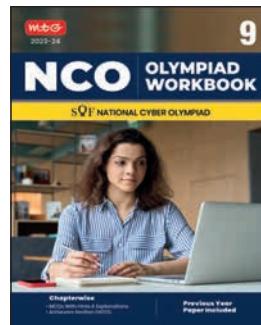
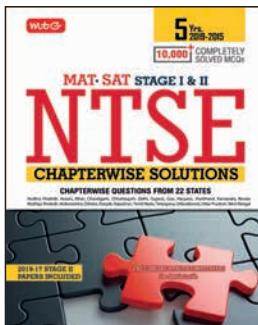
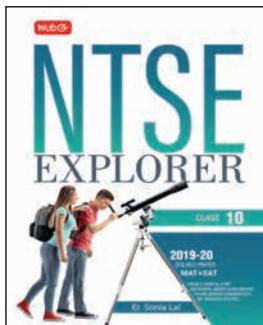
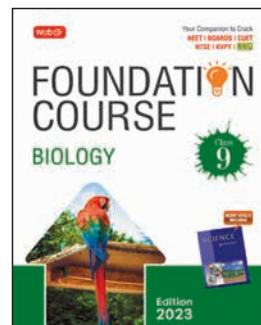
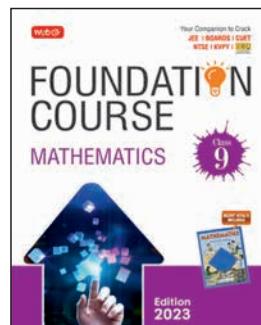
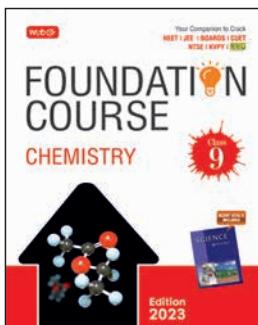
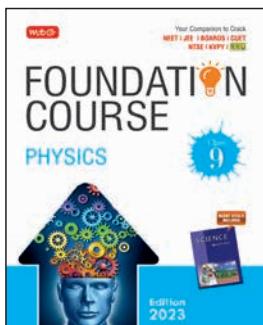
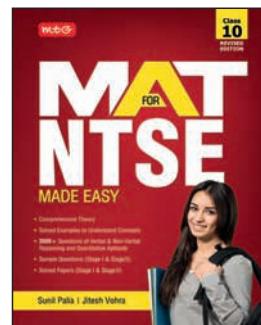
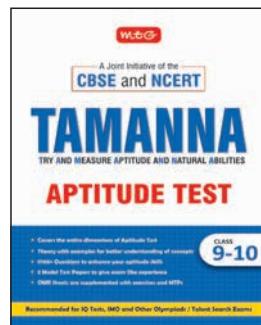
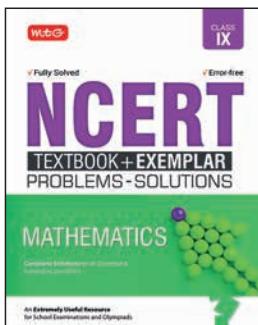
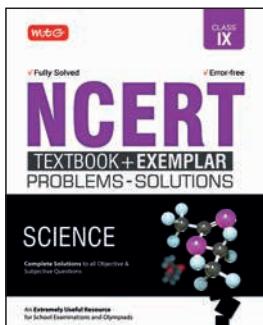
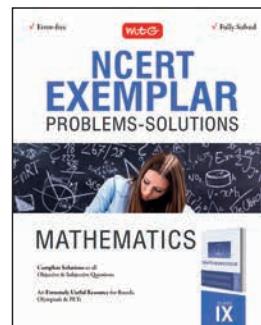
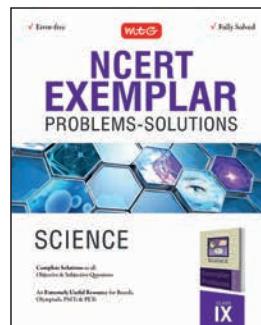
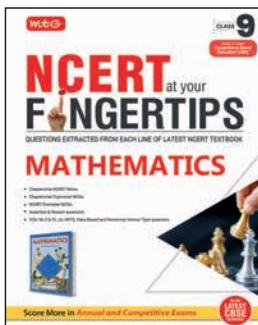
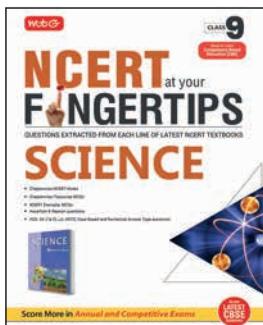
$$= 2 \times \text{atomic mass of C} + 2 \times \text{atomic mass of H}$$

$$= (2 \times 12 + 2 \times 1) \text{ u} = (24 + 2) \text{ u} = 26 \text{ u}$$

(b) Molar mass of  $\text{S}_8$  =  $8 \times$  atomic mass of S

$$= (8 \times 32) \text{ u} = 256 \text{ u}$$

(c) Molar mass of  $\text{P}_4$  =  $4 \times$  atomic mass of P




















$$= (4 \times 31) \text{ u} = 124 \text{ u}$$

(d) Molar mass of  $\text{HCl}$  = atomic mass of H + atomic mass of Cl  
 $= (1 + 35.5) \text{ u} = 36.5 \text{ u}$

(e) Molar mass of  $\text{HNO}_3$

$$= \text{atomic mass of H} + \text{atomic mass of N} + 3 \times \text{atomic mass of O}$$

$$= (1 + 14 + 3 \times 16) \text{ u} = (1 + 14 + 48) \text{ u} = 63 \text{ u}$$

