Atoms and Molecules

ANSWERS

- 1. Aurum
- **2.** *M*SO₄
- **3(i)** BaCl₂

3(ii) A compound made up of two elements is called a binary compound, *e.g.*, water (H_2O).

3(iii) Magnesium bromide

3(iv) CO₃²⁻

- 4(i) CaCl₂
- 4(ii) Valency of Na : 1, Valency of sulphide : 2

4(iii) (b)

4(iv) (a)

5. (c) : Mg has valency of +2. So, it will form MgCl₂ while Al, Na and Si will form chlorides AlCl₃, NaCl and SiCl₄ respectively.

OR

(d)

6. (c)				
7. (c):	Κ	L	М	V <mark>ale</mark> ncy
N (at. no. 7) :	2	5		3
Cl (at. no. 17)	2	8	7	1
Thus, N and Cl v	vill form	n <mark>co</mark> mpoun	d, NCl ₃	
	K	L	М	Valency
Cl (at. no. 17)	2	8	7	1
S (at. no. 16)	2	8	6	2
Thus, S and Cl w	ill form	compound	d, SCl ₂ .	
	Κ	L	М	Valency
O (at. no. 8)	2	6	-	2
F (at. no. 9) : 2	27	-		1
Thus, O and F w	ill form	compound	l, OF ₂ .	
	K	L	М	Valency
Na (at. no. = 11): 2	8	1	1
F (at. no. = 9)	2	7	-	1
Thus, Na and F v	vill forr	n compoun	d, NaF.	
8. (b): Valency of sodium = 1 Valency of phosphorus = 3				
, , , , , , , , , , , , , , , , , , ,		Symbol N	Va 🥄	P
		Valency	1⁄	<u> </u>

Formula : Na_3P

CHAPTER

OR

(c) : Phosphorus (P) is a tetratomic element (written as P_4). Hence, it should indicated as P_4 .

- 9. (d)
- 10. (c)

11. (a): Symbol of tin is Sn.

12. (a): $\frac{\text{Atomic mass of O}}{\text{Atomic mass of C}} = \frac{16}{12} = \frac{4}{3}$

OR

(d) : (i) Nitrogen $- N_2$ (ii) Neon - Ne(iii) Oxygen $- O_2$ (iv) Sulphur $- S_8$ (v) Phosphorus $- P_4$ (vi) Ozone $- O_3$ (vii) Fluorine $- F_2$ (viii) Hydrogen $- H_2$ (ix) Fullerene $- C_{60}$

13. (d): % of carbon in the compound = $\frac{12}{106} \times 100$ = 11.32%

14. (a): For universally accepted atomic mass unit in 1961, C-12 was selected as standard. However, the new symbol used is 'u'(unified mass) in place of amu.

15. Molecular mass of $CaSO_4 = 1$ (Ca) + 1 (S) + 4 (O) = 1 (40) + 1 (32) + 4 (16) = 40 + 32 + 64 = 136 u Also mass of sulphur in $CaSO_4 = 1 \times (32) = 32$ u

... Mass percentage of sulphur in CaSO₄

$$=\frac{32}{136}\times100=23.53\%$$

OR

Total mass of reactants = 8.4 g + 20 g = 28.4 g Total mass of reactants = Total mass of products 28.4 = 4.4 + x (mass of residue left) $28.4 - 4.4 = x \implies x = 24$ g **16.** (a) K₂SO₄ (b) In *M*Cl valency of *M* is 1.

17. (a) Calcium phosphate

(b) Magnesium hydroxide

SymbolCa PO_4 SymbolMgOHCharge2+3-Charge2+1-Formula: $Ca_3(PO_4)_2$ Formula:Mg(OH)_2

2

18. Ratio by mass C : 0 3 8 2 40 Mass of carbon required = $\frac{3 \times 40}{8} = 15 \text{ g}$

OR

(a) The formula *M*O shows that the valency (charge) of M = +2

20. (a) (i) Atoms cannot exist independently whereas molecules can exist independently.

(ii) Molecular mass is the sum of masses of the atoms in the molecule whereas formula mass is the sum of atomic masses of all the atoms in a formula unit of an ionic compound.

MtG 100 percent | Science Class-9

21. (a) Let the element be represented by the symbol *E*. Formula of oxide in which valency of E = 4 are E_2O_4 or EO_2 Formula of oxide in which valency of E = 6 are E_2O_6 or EO_3

- (b) Formula of oxide of the element = A_2O_5
- (i) The valency of the element A in the oxide = 5
- (ii) The formula of the chloride of the element $A = ACI_{s}$

22. (a) Ionic compounds are made up of ions. An ionic compound contains a cation which is a positive ion and an anion which is a negative ion e.g., sodium chloride is an ionic compound made up of Na⁺ and Cl⁻ ions.

A molecular compound is made up of molecules e.g. ammonia (NH_3) , carbon dioxide (CO_2) .

(b)	5		Metal	N	lor	n-metal	
(i)	Fe	₂ 0 ₃	Fe(3)		1	0(2)	
(ii)	Ba	ICI ₂	Ba(2)		(Cl(1)	
			C)R			
(i)	0.096×100						
(1)	$\frac{1}{0.24} = 40\%$						
% composition of O = $\frac{0.144}{0.24} \times 100 = 60\%$							
(ii)	ii) (a) Calcium phosphate (b) Magnesium hydroxide						
		Symbo	l Ca		Cl	Symbol Mg 🔪 🖌 O	
		Charge	e 2+	`_	1	Charge 2+ 2-	
		Formul	a: $CaCl_2$			Formula: MgO	
23.							
(a)			Atom			Molecule	
	(i)	lt is t	he smallest:	(i))	t is the smallest particle of	
		particle	of an element		á	an element or a compound	
		that ta	kes part in a		t	hat is capable of an	
	()	chemica	al reaction.	l reaction. independent existence.		ndependent existence.	
	(ii)	It is usu	ially not stable	(ii	i) I	t is usually stable by itself.	
	by itself.						
(b)			Cation			Anion	
	(i)	lt is po	sitively charged.		(i)) It is negatively charged	
	(ii)	It is for	med from meta	al	(ii)	It is formed from non-	
		atoms.				metal atoms.	
(c)		Mole	cular mass			Formula unit mass	
	(i)	It is ca	alculated by	(i)	F	ormula unit mass of a	
		adding a	atomic masses		SL	ubstance is the sum of the	
		of all the	atoms present		a	tomic masses of all the	
		substan		atoms present in one formula			
	(jj)	It is for	molecules.	(ii)	lt	is for ionic compounds.	
	(1)	adding a of all the in one n substand	atomic masses atoms present nolecule of the ce.	(1)	sı ai at	ubstance is the sum of the tomic masses of all the toms present in one formula nit of the compound.	
	(ii)	It is for	molecules.	(ii)	lt	is tor ionic compounds.	

24. (a) Cation : Mg^{2+} , Anion : CH_3COO^-

(b) K_2SO_4 , $BaSO_4$, $Al_2(SO_4)_3$

Atoms and Molecules

- 25. (a) (i) Elements : Co, Cu
- (ii) Compounds : AIF₃, CoO, NaBrO₃, Na₂S, V₂O₅, CaSO₄

b)	Compounds	Elements
	AIF ₃	(Al, F) Aluminium, Flourine
	CoO	(Co, O) Cobalt, Oxygen
	NaBrO ₃	(Na, Br, O) Sodium, Bromine, Oxygen
	Na ₂ S	(Na, S) Sodium, Sulphur
	$V_2 O_5$	(V, O) Vanadium, Oxygen
	CaSO ₄	(Ca, S, O) Calcium, Sulphur, Oxygen
、		

- (c) NaBrO₃ : Sodium bromate
- CaSO₄ : Calcium sulphate

OR

- (a) Two atoms of oxygen 2 O (i)
 - (b) Diatomic oxygen O₂ molecule
 - (c) Triatomic oxygen O_3 molecule
 - (d) Two atoms of hydrogen and one atom of oxygen forming one molecule of water (H_2O) .
- (ii) (a) K_2CO_3 Potassium carbonate
- (b) CaCl₂ Calcium chloride
- (iii) $Al_2(SO_4)_3 = 2 \times 27 + 3(32 + 4 \times 16)$ = 54 u + 3(96)= 54 + 288 = 342 u
- Formula unit mass = 342 u
- **26.** (a) Ca(OH)₂ = 40 + 2 × 16 + 2 × 1 = 64 u
- (b) $(NH_4)_3PO_4 = 3 \times (14 + 4) + 31 + 4 \times 16 = 149 u$
- (c) $C_2H_5COOCH_3 = 4 \times 12 + 8 \times 1 + 2 \times 16 = 88$ u
- (d) $Mg(NO_3)_2 = 24 + 2 \times (14 + 16 \times 3) = 148 \text{ u}$
- $Na_{2}CO_{3} \cdot 10H_{2}O = 2 \times 23 + 12 + 3 \times 16 + 10 \times 18 = 286 u$ (e)
- **27.** (i) Atomicity Number of atoms constituting a molecule,
- (ii) Polyatomic element sulphur (S_8) Polyatomic ion - NH₄⁺, SO₄²⁻
- (iii) Law of conservation of mass states that mass can neither
- be created nor destroyed in a chemical reaction.
- (iv) (a) Na₂CO₃ Sodium carbonate
 - (b) NH₄Cl Ammonium chloride
 - (c) ZnO Zinc oxide
 - (d) Al(OH)₃ Aluminium hydroxide

- (d) BaCl₂ Ba(2)
- (a) $NH_{4'}^+$ (b) SO_4^{2-} (ii)

29. (a) A group of atoms carrying a charge is known as polyatomic ion.

- e.g., PO₄³⁻, SO₄²⁻, NH₄⁺
- (b) Cu²⁺, Na⁺, Fe³⁺ cations Cl^{-} , SO_4^{2-} , PO_4^{3-} anions $CuCl_2$, $CuSO_4$, $Cu_3(PO_4)_2$; NaCl, Na₂SO₄, Na₃PO₄; FeCl₃, Fe₂(SO₄)₃, FePO₄
- (c) Number of atoms present in]
- $CO_3^{2-} = 1C + 3(0) = 4$ (i)
- (ii) $PO_4^{3-} = 1P + 4(0) = 5$
- (iii) $P_2O_5 = 2P + 5(0) = 7$
- (iv) CO = 1C + 1(O) = 2

30.

	Chemical formula	Ratio by mass
(a)	Ammonia (NH ₃)	N(1) : H(3)
		14:3
(b)	Carbon monoxide (CO)	C(1) : O(1)
		12 : 16 or 3 : 4
(c)	Hydrogen chloride (HCl)	H(1) : Cl(1)
		1:35.5 or 2:71
(d)	Aluminium fluoride (AIF ₃)	Al(1) : F(3)
		27 : 19 × 3 or 9 : 19
(e)	Magnesium sulphide (MgS)	Mg(1) : S(1)
		24:32 or 3:4

OR

- (a) Calcium fluoride CaF_2
- (b) Hydrogen sulphide $-H_2S$
- (c) Ammonia – NH₃

 \odot

- (d) Carbon tetrachloride CCl_4
- (e) Sodium oxide Na₂O
- (f) Carbon monoxide – CO Carbon dioxide $- CO_2$

3

MtG BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information