Magnetic Effects of Electric Current

À TRY YOURSELF

ANSWERS

- 1. (b): Permanent magnetism
- 2. (c) : Point towards the South pole.

3. (b) : The magnitude of magnetic field due to a current carrying straight conductor is directly proportional to the current flowing through i.e., $B \propto I$.

4. (a) : The magnitude of magnetic field due to straight current carrying conductor is inversely proportional to the distance between source and point of observation. $B \propto \frac{1}{r}$ So, the field decrease with increase in distance and the separation between the field lines increases.

5. (c) : According to right hand thumb rule the direction of current in this face of the circular conductor is anticlockwise.

6. The magnetic field lines are nearly circular concentric due to circular carrying current.

- 7. (a) : Increases.
- 8. Inside solenoid magnetic field is uniform.

9. The end of the solenoid at which current flows in anticlockwise direction acts as a North pole, while the end at which current flows in clockwise direction acts as a south pole.

10. A moving charge produces an electric current which in turn causes the magnetic field.

- **11.** The particle has a positive charge.
- 12. Fuse should be connected to the live wires.
- **13.** It is the symbol of an electric fuse.

14. The direction and magnitude of AC change periodically whereas in case of DC, these remain constant.

MtG BEST SELLING BOOKS FOR CLASS 10

X

10

10

10

10

Visit www.mtg.in for complete information