Mid Term

SOLUTIONS

1. (d) $: \pi$ is irrational and $\frac{22}{7}$ is rational.
2. (b) : Lines parallel to same line are parallel to each other.
3. (b) : Diagonals of rhombus are perpendicular to each other.
4. Let $P(x)=x^{21}+101$

When $P(x)$ is divided by $(x+1)$, then for finding remainder put $x+1=0$ i.e., $x=-1$
Putting $x=-1$ in (i), we get

$$
P(-1)=(-1)^{21}+101=-1+101
$$

$\therefore \quad P(-1)=100$
Hence, the remainder is 100 .
5. Given, $A B=5 \mathrm{~cm}$ and $C D=3 \mathrm{~cm}$.
or $A B>C D$
Hence, $\angle A O B>\angle C O D$
$[\because$ Longer chord subtends greater angle at the centre]. 6. We know that, side opposite to greater angle is longer.
Since, $\angle A>\angle B \therefore B C>A C$
Since, $\angle B>\angle C$
$\therefore \quad A C>A B$
$\therefore \quad B C>A C>A B$

Thus, the descending order of sides is $B C>A C>A B$
7. We have, $(x-7,-2)=(2, x+y)$

On comparing the coordinates, we get
$x-7=2 \Rightarrow x=9$
and $x+y=-2$
$\Rightarrow \quad y=-2-9=-11$
$\therefore \quad 7(x-y)=7(9-(-11))=7 \times 20=140$
8. In triangles $I B X$ and $I B Y$, $\angle I X B=\angle I Y B$ (Each equal to 90°) $\angle I B X=\angle I B Y$ (Given)
$I B=I B$
(Common)
$\Delta I B X \cong \triangle I B Y$
(By AAS congruency)
$I X=I Y \quad$ (By C.P.C.T.)
9. Area of $\triangle A B C=\frac{1}{2} \times B C \times A B$

$$
\begin{equation*}
=\frac{1}{2} \times 12 \times 5 \tag{i}
\end{equation*}
$$

From (i) and (ii), we get
$\therefore \quad \frac{1}{2} \times 13 \times B P=\frac{1}{2} \times 12 \times 5$
$\Rightarrow 13 \times B P=12 \times 5 \Rightarrow B P=\frac{60}{13}=4.62 \mathrm{~cm}$
10. Join $B D$ and $A C$.

In $\triangle D C B$ and $\triangle C D A$,
$D C=D C$
$A D=B C$
$\angle A D C=\angle B C D$
$\begin{array}{ll}\therefore & \triangle D C B \cong \triangle C D A \\ \Rightarrow & \angle D A C=\angle D B C\end{array}$

$\therefore \quad A, B, C$ and D are
i.e., Points A, B, C and D lie on a circle.
11. Since, $P Q \| B C$
$\angle Q A C=\angle A C B$
(Alternate interior angles)
$\therefore \quad \angle Q A C=42^{\circ}$
Also, in $\triangle A B C, \angle C A B+\angle B+\angle C=180^{\circ}$
[By angle sum property of triangle]
$\Rightarrow \quad \angle C A B=180^{\circ}-64^{\circ}-42^{\circ}=74^{\circ}$
$\therefore \quad \angle Q A B=\angle Q A C+\angle C A B=42^{\circ}+74^{\circ}=116^{\circ}$
12. In triangle $O A P$ and $O B P$,
$A P=P B$
(Given)
$\angle O P A=\angle O P B$
$O P=O P$
So, $\triangle O P A \cong \triangle O P B$
$\therefore \quad O A=O B$
Similarly, $\triangle O Q B \cong \triangle O Q C$
$\therefore \quad O B=O C$

From (i) and (ii), we get
$O A=O B=O C$
13. Let the two numbers be x and y such that $x>y$.

According to the question, we have
$4 x=10 y+2 \Rightarrow 2 x=5 y+1$, which is required linear equation in two variables.
When $x=8,2 \times 8=5 y+1 \Rightarrow 5 y=15 \Rightarrow y=3$
When $x=3,2 \times 3=5 y+1 \Rightarrow 5 y=5 \Rightarrow y=1$
14. Given : $\mathrm{A}\left\|\|^{\mathrm{gm}} A B C D\right.$ and P, Q are two points on $A B$ and $C D$.
To prove : (i) $\operatorname{ar}(\triangle A Q B)=\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle B P C)$
(ii) $\operatorname{ar}(\triangle D P C)=\operatorname{ar}(\triangle A Q D)+\operatorname{ar}(\triangle B Q C)$

Proof : $\operatorname{ar}(\triangle A Q B)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
$\left(\because \triangle A Q B\right.$ and $\|^{g m} A B C D$ are on the same base $A B$ and between the same parallel lines $A B$ and $C D$)
$\operatorname{ar}(\triangle D P C)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
Now, $\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle B P C)+\operatorname{ar}(\triangle D P C)=\operatorname{ar}\left(\|{ }^{\mid g m} A B C D\right)$
$\Rightarrow \operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle B P C)+\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$ [Using (ii)]

$$
=\operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)
$$

$\Rightarrow \operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle B P C)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
Similarly, $\operatorname{ar}(\triangle A Q D)+\operatorname{ar}(\triangle B Q C)=\frac{1}{2} \operatorname{ar}\left(\|^{g \mathrm{~m}} A B C D\right) \ldots(\mathrm{iv})$
From (i) and (iii), $\operatorname{ar}(\triangle A Q B)=\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle B P C)$
From (ii) and (iv), $\operatorname{ar}(\triangle D P C)=\operatorname{ar}(\triangle A Q D)+\operatorname{ar}(\triangle B Q C)$.
15. Given : $A B C D$ is a rhombus. And $P A D Q$ is straight line such that $P A=A D=Q D$
To prove : $\angle P R Q=90^{\circ}$
Proof : $\triangle D Q C$ is an isosceles triangle.
$\therefore \quad D Q=D C$

$\Rightarrow \quad \angle D Q C=\angle D C Q$
(Angle opposite to equal sides are equal)
$\angle A D C=\angle D Q C+\angle D C Q$
(By exterior angle property)

$$
=2 \angle D Q C
$$

$\triangle P A B$ is an isosceles triangle.
$\therefore \quad A P=A B$
$\Rightarrow \quad \angle A P B=\angle A B P$
(Angle opposite to equal sides are equal)
$\angle D A B=\angle A P B+\angle A B P$

$$
=2 \angle A P B
$$

(By exterior angle property)

Now, $\angle A D C+\angle D A B=180^{\circ}$
(Co-interior angles)
$\Rightarrow \quad 2 \angle D Q C+2 \angle A P B=180^{\circ}$
$\Rightarrow \quad \angle D Q C+\angle A P B=90^{\circ}$
In $\triangle P Q R$,
$\angle Q P R+\angle P Q R+\angle P R Q=180^{\circ}$
$\Rightarrow \quad \angle P R Q=180^{\circ}-90^{\circ} \therefore \angle P R Q=90^{\circ}$

mtG BEST SELLING BOOKS FOR CLASS 9

