Post-Mid Term

SOLUTIONS

1. (a) $: \because p \| q$ and r is transversal $\therefore \quad \angle 1=70^{\circ}$
(Corresponding angles)
Also, $\angle 1+2 x=180^{\circ}$
(Linear pair)
$\Rightarrow \quad 2 x=180^{\circ}-\angle 1$
$=180^{\circ}-70^{\circ}=110^{\circ}$
$\Rightarrow \quad x=55^{\circ}$
2. (d) : Given, abscissa of the point $=\frac{1}{2}=0.5$

Ordinate of the point $=\frac{-3}{4}=-0.75$
$\therefore \quad$ The coordinates of the point are $(0.5,-0.75)$
3. (d) : No circle can be drawn through 3 collinear points.
4. The decimal representation of an irrational number is neither terminating nor repeating.
5. Here, side of an equilateral triangle $=$ ' $2 a^{\prime}$ units.

Now, area of equilateral triangle with side ' $2 a^{\prime}=\frac{\sqrt{3}}{4}(\text { side })^{2}$ $=\frac{\sqrt{3}}{4}(2 a)^{2}$ sq. units $=\sqrt{3} a^{2}$
6. Given, a triangle and a rhombus are on the same base and between the same parallels.
$\therefore \quad$ Area of triangle $=\frac{1}{2} \times$ area of rhombus

$$
[\because \text { A rhombus is a parallelogram }]
$$

\Rightarrow Area of rhombus $=2 \times$ area of triangle

$$
=2 \times 29=58 \mathrm{~cm}^{2}
$$

7. Total number of balls, Ankit bowled $=30$

Number of wickets taken by Ankit $=5$
$\therefore \quad$ Probability of batsman getting out by Ankit's bowling $=\frac{5}{30}=\frac{1}{6}$
Now, the probability of batsman not getting out by Ankit's bowling $=1-P$ (batsman getting out by Ankit's bowling) $=1-\frac{1}{6}=\frac{5}{6}$
8. Given, $x^{2}-3 x-1=0$
$\Rightarrow x^{2}-3 x=1$
$\Rightarrow \quad x(x-3)=1$
$\Rightarrow \quad x-3=1 / x$
$\Rightarrow x-1 / x=3$

Now, $\left(x-\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}-2$
$\Rightarrow \quad 3^{2}=x^{2}+\frac{1}{x^{2}}-2$
[Using (i)]
$\Rightarrow 9+2=x^{2}+\frac{1}{x^{2}} \Rightarrow x^{2}+\frac{1}{x^{2}}=11$
9. Given, $\angle B=\left(\frac{3}{4}\right)^{\mathrm{th}}$ of $\angle A$
$=\frac{3}{4} \times\left(4 x+24^{\circ}\right)=3 x+18^{\circ}$
Also, $\angle C=180^{\circ}-(\angle A+\angle B)$
(By angle sum property of a triangle)
$=180^{\circ}-\left(4 x+24^{\circ}+3 x+18^{\circ}\right)$
$=180^{\circ}-7 x-42^{\circ}=138^{\circ}-7 x$
In $\triangle A B C, A B=A C \Rightarrow \angle C=\angle B$
$[\because$ Angles opposite to equal sides are equal.]
$\Rightarrow \quad 138^{\circ}-7 x=3 x+18^{\circ}$
$\Rightarrow 138^{\circ}-18^{\circ}=3 x+7 x \Rightarrow 120^{\circ}=10 x \Rightarrow x=12^{\circ}$
Thus, $\angle A=4 x+24^{\circ}=4 \times 12^{\circ}+24^{\circ}=72^{\circ}$
10. Let $\angle R=3 x$ and $\angle S=2 x$

Now, $\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
(By angle sum property of a quadrilateral)
$\Rightarrow 250^{\circ}+3 x+2 x=360^{\circ} \Rightarrow 5 x=110^{\circ} \Rightarrow x=22^{\circ}$
$\therefore \quad \angle R=3 x=3 \times 22^{\circ}=66^{\circ}$

$$
\angle S=2 x=2 \times 22^{\circ}=44^{\circ}
$$

Now, $\angle R-\angle S=66^{\circ}-44^{\circ}=22^{\circ}$
11. Total number of patients $=200$
(i) Number of patients cured in less than 2 months $=100+35=135$
$\therefore \quad P$ (a patient will be cured in less than 2 months)

$$
=\frac{135}{200}=\frac{27}{40}
$$

(ii) Number of patients cured in 1 month or more but not more than 3 months $=35+35=70$
$\therefore \quad$ Required probability $=\frac{70}{200}=\frac{7}{20}$
12. External dimensions of box $=18 \mathrm{~cm}, 15 \mathrm{~cm}$ and 10.8 cm Total volume of box with wood $=18 \times 15 \times 10.5=2835 \mathrm{~cm}^{3}$
Thickness of wood $=5 \mathrm{~mm}=0.5 \mathrm{~cm}$
Internal length $=18-(2 \times 0.5)=17 \mathrm{~cm}$
Internal breadth $=15-(2 \times 0.5)=14 \mathrm{~cm}$
Internal height $=10.5-0.5=10 \mathrm{~cm}$
Internal volume of box $=17 \times 14 \times 10=2380 \mathrm{~cm}^{3}$
$\therefore \quad$ Volume of required wood $=2835-2380=455 \mathrm{~cm}^{3}$
13. The given equations are $x=4, x=2, y=1$ and $y=3$ We know that equation of form $x=a$ is a line through $(a, 0)$ and parallel to y-axis and that of form $y=a$ is a line through $(0, a)$ and parallel to x-axis in Cartesian plane.
Drawing the graph of given equations on the graph, we get

Distance between lines $x=2$ and $x=4$ is 2 units and that of between $y=1$ and $y=3$ is also 2 units.
So, the figure formed by these lines is a square.
\therefore Area of square $A B C D=(\text { side })^{2}=2^{2}=4$ sq. units.
14. (i) Range $=$ Highest value - Lowest value $=10-0=10$
(ii) Frequency distribution table:

Score	Tally marks	frequency			
0	$\\|\\|$	3			
1	$\\|$	2			
2	$\\|\\|\\|$	4			
3	$\\|$	2			
4	$\\|\\|\\|$	6			
5	$\\|\\|$	4			
6	$\\|\\|\\|$	7			
7	$\\|\\|$	5			
8	$\\|\\|$	4			
9	$\\|$	2			
10	\mid	1			
		Total = 40			

(iii) Number of students who got Grade E
$=3+2+4+2=11$
(iv) Number of students who got Grade $\mathrm{A}=2+1=3$
\therefore Percentage of students got grade $A=\frac{3}{40} \times 100 \%=7.5 \%$

15. Steps of construction :

Step I : Draw a line $\overrightarrow{P Q}$.
Step II : Take a point D on $P Q$ and draw $D E \perp P Q$.
Step III : Cut the line segment $A D$ of length 4.3 cm from $D E$.
Step IV : Draw equal angles of 30° at A on both sides of $A D$ such that $\angle C A D=30^{\circ}$ and $\angle B A D=30^{\circ}$, where B and C lie on $P Q$.

Thus, $\triangle A B C$ is the required triangle.

Justification :

We have, $\angle A=\angle B A D+\angle C A D=30^{\circ}+30^{\circ}=60^{\circ}$
Also, $A D \perp B C$
$\therefore \angle A D B=90^{\circ}$
In $\triangle A B D, \angle B A D+\angle D B A+\angle A D B=180^{\circ}$
[By angle sum property of a triangle]
$\Rightarrow 30^{\circ}+90^{\circ}+\angle D B A=180^{\circ}$
$\Rightarrow \quad \angle D B A=60^{\circ}$
Similarly, $\angle D C A=60^{\circ}$
$\therefore \quad \angle A=\angle B=\angle C=60^{\circ}$
Thus, $\triangle A B C$ is an equilateral triangle. Hence, our construction is justified.

mtG BEST SELLING BOOKS FOR CLASS 9

