Post-Mid Term

SOLUTIONS

(a) : $\therefore p \parallel q$ and *r* is transversal 1. $\angle 1 = 70^{\circ}$ *.*... (Corresponding angles) Also, $\angle 1 + 2x = 180^{\circ}$ (Linear pair) $2x = 180^{\circ} - \angle 1$ \Rightarrow $= 180^{\circ} - 70^{\circ} = 110^{\circ}$ $x = 55^{\circ}$ \Rightarrow (d) : Given, abscissa of the point = $\frac{1}{2}$ = 0.5 2. Ordinate of the point = $\frac{-3}{4}$ = -0.75 *.*.. The coordinates of the point are (0.5, -0.75)3. (d) : No circle can be drawn through 3 collinear points. The decimal representation of an irrational number 4. is neither terminating nor repeating. Here, side of an equilateral triangle = 2a' units. 5. Now, area of equilateral triangle with side $\frac{\sqrt{3}}{4}$ (side)² $=\frac{\sqrt{3}}{4}(2a)^2$ sq. units $=\sqrt{3}a^2$ 6. Given, a triangle and a rhombus are on the same base and between the same parallels. Area of triangle = $\frac{1}{2}$ × area of rhombus [:: A rhombus is a parallelogram] Area of rhombus = $2 \times \text{area of triangle}$ $= 2 \times 29 = 58 \text{ cm}^2$ Total number of balls, Ankit bowled = 30 7. Number of wickets taken by Ankit = 5 Probability of batsman getting out by Ankit's bowling = $\frac{5}{30} = \frac{1}{6}$ Now, the probability of batsman not getting out by Ankit's bowling = 1 - P(batsman getting out by Ankit's bowling) = $1 - \frac{1}{6} = \frac{5}{6}$ Given, $x^2 - 3x - 1 = 0$ 8. $\Rightarrow x^2 - 3x = 1$ $\Rightarrow x(x-3) = 1$ $\Rightarrow x - 3 = 1/x$ $\Rightarrow x - 1/x = 3$...(i)

Now, $\left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2$ $\begin{array}{ccc} 2x & 1 & & \\ \hline & & & \\ \end{array} \xrightarrow{p} 3^2 = x^2 + \frac{1}{x^2} - 2$ $\Rightarrow 9 + 2 = x^2 + \frac{1}{x^2} \Rightarrow x^2 + \frac{1}{x^2} = 11$ [Using (i)] 9. Given, $\angle B = \left(\frac{3}{4}\right)^{\text{th}}$ of $\angle A$ $= \frac{3}{4} \times (4x + 24^{\circ}) = 3x + 18^{\circ}$ Also, $\angle C = 180^\circ - (\angle A + \angle B)$ (By angle sum property of a triangle) $= 180^{\circ} - (4x + 24^{\circ} + 3x + 18^{\circ})$ $= 180^{\circ} - 7x - 42^{\circ} = 138^{\circ} - 7x$ In $\triangle ABC$, $AB = AC \implies \angle C = \angle B$ [:: Angles opposite to equal sides are equal.] $138^{\circ} - 7x = 3x + 18^{\circ}$ \Rightarrow \Rightarrow 138° - 18° = 3x + 7x \Rightarrow 120° = 10x \Rightarrow x = 12° Thus, $\angle A = 4x + 24^\circ = 4 \times 12^\circ + 24^\circ = 72^\circ$ **10.** Let $\angle R = 3x$ and $\angle S = 2x$ Now, $\angle P + \angle Q + \angle R + \angle S = 360^{\circ}$ (By angle sum property of a quadrilateral) $250^{\circ} + 3x + 2x = 360^{\circ} \Rightarrow 5x = 110^{\circ} \Rightarrow x = 22^{\circ}$ \Rightarrow $\angle R = 3x = 3 \times 22^\circ = 66^\circ$ *.*.. $\angle S = 2x = 2 \times 22^\circ = 44^\circ$ Now, $\angle R - \angle S = 66^{\circ} - 44^{\circ} = 22^{\circ}$ **11.** Total number of patients = 200 Number of patients cured in less than 2 months (i) = 100 + 35 = 135*P*(a patient will be cured in less than 2 months) = <u>135</u> = <u>27</u> 200 40 (ii) Number of patients cured in 1 month or more but not more than 3 months = 35 + 35 = 70Required probability = $\frac{70}{200} = \frac{7}{200}$ *.*.. 12. External dimensions of box = 18 cm, 15 cm and 10.8 cm Total volume of box with wood = $18 \times 15 \times 10.5 = 2835$ cm³ Thickness of wood = 5 mm = 0.5 cmInternal length = $18 - (2 \times 0.5) = 17$ cm Internal breadth = $15 - (2 \times 0.5) = 14$ cm Internal height = 10.5 - 0.5 = 10 cm Internal volume of box = $17 \times 14 \times 10 = 2380 \text{ cm}^3$ \therefore Volume of required wood = 2835 - 2380 = 455 cm³

1

MtG 100 PERCENT Mathematics Class-9

13. The given equations are x = 4, x = 2, y = 1 and y = 3We know that equation of form x = a is a line through (a, 0) and parallel to *y*-axis and that of form y = a is a line through (0, a) and parallel to *x*-axis in Cartesian plane.

Drawing the graph of given equations on the graph, we get

Distance between lines x = 2 and x = 4 is 2 units and that of between y = 1 and y = 3 is also 2 units.

So, the figure formed by these lines is a square.

 \therefore Area of square *ABCD* = (side)² = 2² = 4 sq. units.

14. (i) Range = Highest value – Lowest value = 10 - 0 = 10

(ii) Frequency distribution table :

Score	Tally marks	frequency
0		3
1	Ï	2
2	Ü.	4
3	Ï	2
4	Ш	6
5		4
6	Ш. Ш	7
7	, Ш	5
8		4
9		2
10		1
		Total = 40

- (iii) Number of students who got Grade E
- = 3 + 2 + 4 + 2 = 11

(iv) Number of students who got Grade A = 2 + 1 = 3

:. Percentage of students got grade A = $\frac{3}{40} \times 100\% = 7.5\%$

15. Steps of construction :

Step I : Draw a line \overline{PQ} .

Step II : Take a point *D* on *PQ* and draw $DE \perp PQ$.

Step III : Cut the line segment *AD* of length 4.3 cm from *DE*.

Step IV : Draw equal angles of 30° at *A* on both sides of *AD* such that $\angle CAD = 30^\circ$ and $\angle BAD = 30^\circ$, where *B* and *C* lie on *PQ*.

Thus, ΔABC is the required triangle.		
Justification :		
We have, $\angle A = \angle BAD + \angle CAD = 30^\circ + 30^\circ = 60^\circ$		
Also, $AD \perp BC$		
$\therefore \ \angle ADB = 90$	٥	
In $\triangle ABD$, $\angle BAD + \angle DBA + \angle ADB = 180^{\circ}$		
	[By angle sum property of a triangle]	
$\Rightarrow 30^{\circ} + 90^{\circ} +$	$\angle DBA = 180^{\circ}$	
$\Rightarrow \angle DBA = 60$	၀	
Similarly, $\angle DC$	$A = 60^{\circ}$	
$\therefore \angle A = \angle B =$	$\angle C = 60^{\circ}$	

Thus, $\triangle ABC$ is an equilateral triangle. Hence, our construction is justified.

mtg BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information