Circles

CHAPTER **10**

SOLUTIONS

1. (i) interior

(ii) exterior

- (iii) diameter
- (iv) semicircle
- (v) chord
- (vi) three

2. (i) True [All points on the circle are equidistant from the centre.]

(ii) False [A circle can have an infinite number of equal chords.]

- (iii) False [Each part will be less than a semicircle.]
- (iv) True [Diameter = 2 × Radius]

NCERT FOCUS

(v) False [The region between the chord and its corresponding arc is a segment.]

(vi) True [A circle can be drawn on a paper as it is two dimensional figure.]

EXERCISE - 10.2

1. Given : Two congruent circles with centres O and O' and radii *r* having chords *AB* and *CD* respectively, such that AB = CD.

To Prove : $\angle AOB = \angle CO'D$

Proof : In $\triangle AOB$ and $\triangle CO'D$, we have

AB = CD	[Given]
OA = O'C	[Each equal to r]
OB = O'D	[Each equal to r]
$\therefore \Delta AOB \cong \Delta CO'D$	[By SSS congruency criteria]
$\Rightarrow \angle AOB = \angle CO'D$	[By C.P.C.T.]
• • •	

2. Given : Two congruent circles with centres *O* and *O*' and radii *r* having chords *AB* and *CD* respectively, such that $\angle AOB = \angle CO'D$.

To Prove : *AB* = *CD*

Proof: In $\triangle AOB$ and $\triangle CO'D$, we have OA = O'C [1 $\angle AOB = \angle CO'D$ OB = O'D [1]

[Each equal to r] [Given] [Each equal to r] $\therefore \quad \Delta AOB \cong \Delta CO'D$ Hence, AB = CD [By SAS congruency criteria] [By C.P.C.T.]

1. Let us draw different pairs of circles as shown below:

We have,

In figure	Maximum number of common points	
(i)		Zero
(ii)		One
(iii)		Two

Thus, two circles can have at most two points in common.

2. Steps of construction :

Step I. Take any three points on the given circle. Let these points be *A*, *B* and *C*.

Step II. Join *AB* and *BC*.

intersects PO at O.

Step III. Draw the perpendicular bisector *PQ* of *AB*.Step IV. Draw the perpendicular

bisector RS of BC such that it

Thus, 'O' is the required centre of the given circle.

3. We have two circles with centres *O* and *O*', intersecting at *A* and *B*.

 \therefore *AB* is the common chord of two circles and *OO*' is the line segment joining their centres. Let *OO*' and *AB* intersect each other at *M*.

 \therefore To prove that *OO*' is the perpendicular bisector of *AB*, we join *OA*, *OB*, *O*'A and *O*'B.

Now, in $\Lambda OAO'$ and $\Lambda OBO'$, we have

OA = OB	[Radii of the same circle]
O'A = O'B	[Radii of the same circle]
OO' = OO'	[Common]
$\therefore \Delta OAO' \cong \Delta OBO'$	[By SSS congruency criteria]
$\Rightarrow \angle 1 = \angle 2$	[By C.P.C.T.]
Now, in $\triangle AOM$ and $\triangle BOM$, we have	
OA = OB	[Radii of the same circle]
OM = OM	[Common]

MtG 100 PERCENT Mathematics Class-9

$\angle 1 = \angle 2$	[Proved above]
$\therefore \Delta AOM \cong \Delta BOM$	[By SAS congruency criteria]
$\Rightarrow \angle 3 = \angle 4$	[By C.P.C.T.]
But $\angle 3 + \angle 4 = 180^{\circ}$	[Linear pair]
$\therefore \angle 3 = \angle 4 = 90^\circ \Longrightarrow AM \ \bot$	L <i>OO</i> ′
Also $AM = BM$	[By C.P.C.T.]
Minthe middle interf	ΔD

 \Rightarrow *M* is the mid-point of *AB*.

Thus, OO' is the perpendicular bisector of AB.

EXERCISE - 10.4

We have two intersecting circles with centres at O 1. and O' respectively. Let PQ be the common chord. In two intersecting circles, the line joining their • .•

centres is perpendicular bisector of the common chord.

$\therefore \angle OLP = \angle OLQ = 90^{\circ} \text{ and } PL = LQ$ Now, in right $\triangle OLP$, we have $PL^{2} + OL^{2} = OP^{2} \Rightarrow PL^{2} + (4 - x)^{2} = 5^{2}$ $\Rightarrow PL^{2} = 5^{2} - (4 - x)^{2}$ $\Rightarrow PL^{2} = 25 - 16 - x^{2} + 8x$ $\Rightarrow PL^{2} = 9 - x^{2} + 8x$ (i) Again, in $\triangle O'LP$, we have $PL^{2} = PO'^{2} - LO'^{2} = 3^{2} - x^{2} = 9 - x^{2}$ (ii) From (i) and (ii), we have $9 - x^{2} + 8x = 9 - x^{2}$	
$\Rightarrow 8x = 0 \Rightarrow x = 0$	
\Rightarrow L and O' coincide.	
$\therefore PQ \text{ is a diameter of the smaller circle.}$ $\Rightarrow PL = 3 \text{ cm}$	
But $PL = LQ$: $LQ = 3$ cm	
$\therefore PQ = PL + LQ = 3 \text{ cm} + 3 \text{ cm} = 6 \text{ cm}$	
\therefore Length of the common chord = 6 cm	
2. Given : A circle with centre O. Equal	
chords AB and CD intersect at E.	
To prove : $AE = DE$ and $CE = BE$	
Construction : Draw $OM \perp AB$	
and $ON \perp CD$. Join OE .	
Proof : Since <i>AB</i> = <i>CD</i> [Given]	
\therefore <i>OM</i> = <i>ON</i> [:: Equal chords of a circle are equidistant	
from the centre]	
Now, in $\triangle OME$ and $\triangle ONE$, we have	
$\angle OME = \angle ONE$ [Each equal to 90°]	
[
OE = OE [Common]	
$\therefore \Delta OME \cong \Delta ONE \qquad [By RHS congruency criteria]$	
$\Rightarrow ME = NE $ [By C.P.C.T.]	
Adding AM on both sides, we get	
AM + ME = AM + NE	

$$\Rightarrow AE = DN + NE$$

[:: $AB = CD \Rightarrow \frac{1}{2}AB = \frac{1}{2}DC \Rightarrow AM = DN$]
$$\Rightarrow AE = DE \qquad ...(i)$$

$$\Rightarrow AB - BE = CD - CE$$

$$\Rightarrow BE = CE [:: AB = CD] \qquad ...(ii)$$

From (i) and (ii), we have AE = DE and CE = BE

Given : A circle with centre *O* and equal chords *AB* 3. and CD are intersecting at E.

To prove : $\angle OEA = \angle OED$ **Construction** : Draw $OM \perp AB$ and $ON \perp CD$. **Proof** : In right $\triangle OME$ and right $\triangle ONE$, OM = ON[:: Equal chords of a circle are equidistant from the centre] OE = OE[Common] $\angle OME = \angle ONE$ [Each equal to 90°] $\Lambda OME \simeq \Lambda ONE$

•	$\Delta ONE = \Delta ONE$	[Dy
·.	$\angle OEM = \angle OEN$	
⇒	$\angle OEA = \angle OED$	

[By RHS congruency criteria] [By C.P.C.T.]

Given : Two concentric circles with centre O. Let a 4. line 'l' intersects the outer circle at A and D and the inner circle at *B* and *C*.

To prove : AB = CD. **Construction** : Draw $OM \perp l$. **Proof** : For the outer circle, $OM \perp l$ $\therefore AM = MD$

...(i)

...(i)

[:: Perpendicular drawn from the centre of a circle to the chord bisects the chord] For the inner circle, $OM \perp l$ МC ...(ii)

$$BM = N$$

[:: Perpendicular drawn from the

centre of a circle to the chord bisects the chord] Subtracting (ii) from (i), we have AM - BM = MD - MC

 $\Rightarrow AB = CD$

Let the three girls Reshma, Salma 5. and Mandip be positioned at R, S and *M* respectively on the circle of radius 5 m.

RS = SM = 6 m [Given]

 \therefore Equal chords of a circle

subtend equal angles at the centre.

∴ ∠1 = ∠2

In ΛPOR and ΛPOM we have

e nave	In ΔPOK and ΔPON , we have
[Common]	OP = OP
[Radii of the same circle]	OR = OM
[By (i)]	$\angle 1 = \angle 2$
[By SAS congruency criteria]	$\therefore \Delta POR \cong \Delta POM \qquad [B]$
$R = \angle OPM \qquad [By C.P.C.T.]$	$\therefore PR = PM \text{ and } \angle OPR = \angle$
80° [Linear pair]	$\therefore \ \angle OPR + \angle OPM = 180^{\circ}$
0°	$\therefore \ \angle OPR = \angle OPM = 90^{\circ}$

Circles

 $\Rightarrow OP \perp RM$ Now, in ΔRSP and ΔMSP , we have RS = MS[Given] SP = SP[Common] PR = PM[Proved above] $\Delta RSP \cong \Delta MSP$ [By SSS congruency criteria] • $\angle RPS = \angle MPS$ [By C.P.C.T.] \Rightarrow But $\angle RPS + \angle MPS = 180^{\circ}$ $\Rightarrow \angle RPS = \angle MPS = 90^{\circ}$ *.*.. *SP* passes through *O*. Let OP = x m : SP = (5 - x) m[:: Radius = 5 m] Now, in right $\triangle OPR$, we have $x^2 + RP^2 = 5^2 \implies RP^2 = 5^2 - x^2$...(1) In right $\triangle SPR$, we have $(5-x)^2 + RP^2 = 6^2$ \Rightarrow $RP^2 = 6^2 - (5 - x)^2$...(2) From (1) and (2), we have $5^2 - x^2 = 6^2 - (5 - x)^2$ \Rightarrow 25 - x^2 = 36 - [25 - 10x + x^2] $\Rightarrow -10x + 14 = 0 \Rightarrow 10x = 14$

$$\Rightarrow$$
 $x = \frac{14}{10} = 1.4$

Now, $RP^2 = 5^2 - x^2 \Rightarrow RP^2 = 25 - (1.4)^2$

⇒ $RP^2 = 25 - 1.96 = 23.04 \text{ m}$ ∴ $RP = \sqrt{23.04} = 4.8 \text{ m}$

 $RP = \sqrt{23.04} = 4.8 \text{ m}$

 $\therefore RM = 2RP = 2 \times 4.8 \text{ m} = 9.6 \text{ m}$

Thus, distance between Reshma and Mandip is 9.6 m.

6. Let Ankur, Syed and David are sitting at A, S and D respectively such that AS = SD = AD

i.e. ΔASD is an equilateral triangle.

Let the length of each side of the equilateral triangle be 2x m and O be the centre of circle.

Draw $AM \perp SD$.

Since $\triangle ASD$ is an equilateral. \therefore *AM* passes through *O*.

$$\Rightarrow$$
 $SM = \frac{1}{2}SD = \frac{1}{2}(2x)$

 $\Rightarrow SM = x m$

Now, in right $\triangle ASM$, we have $AM^2 + SM^2 = AS^2$

$$\Rightarrow AM^{2} = AS^{2} - SM^{2} = (2x)^{2} - x^{2} = 4x^{2} - x^{2} = 3x^{2}$$

 $\Rightarrow AM = \sqrt{3}x \text{ m}$

Now, $OM = AM - OA = (\sqrt{3}x - 20)$ m

Again, in right $\triangle OSM$, we have $OS^2 = SM^2 + OM^2$

$$\Rightarrow 20^2 = x^2 + (\sqrt{3}x - 20)^2$$

$$\Rightarrow 400 = x^2 + 3x^2 - 40\sqrt{3}x + 400$$

$$\Rightarrow 4x^2 = 40\sqrt{3}x \Rightarrow x(4x - 40\sqrt{3}) = 0$$

$$\Rightarrow x = 10\sqrt{3}$$

Now, $SD = 2x = 2 \times 10\sqrt{3} = 20\sqrt{3}$ m Thus, the length of the string of each phone = $20\sqrt{3}$ m

EXERCISE - 10.5

1. We have a circle with centre *O*, such that

 $\angle AOB = 60^{\circ} \text{ and } \angle BOC = 30^{\circ}$ $\therefore \quad \angle AOC = \angle AOB + \angle BOC$

 $\therefore \ \angle AOC = 60^\circ + 30^\circ = 90^\circ$

We know, angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \ \ \angle ADC = \frac{1}{2}(\angle AOC) = \frac{1}{2}(90^\circ) = 45^\circ$$

2. We have a circle having a chord *AB* equal to radius of the circle.

 $\therefore \quad AO = BO = AB$

 $\Rightarrow \Delta AOB \text{ is an equilateral triangle.}$ Since, each angle of an equilateral triangle is 60°.

$$\Rightarrow \angle AOB = 60^{\circ}$$

Since, the arc *ACB* makes reflex $\angle AOB = 360^\circ - 60^\circ$ = 300° at the centre of the circle and $\angle ACB$ at a point on the minor arc of the circle.

$$\therefore \quad \angle ACB = \frac{1}{2} [\text{reflex} \angle AOB] = \frac{1}{2} [300^\circ] = 150^\circ$$

Hence, the angle subtended by the chord on the minor arc is 150° .

Similarly,
$$\angle ADB = \frac{1}{2}[\angle AOB] = \frac{1}{2} \times 60^\circ = 30^\circ$$

Hence, the angle subtended by the chord on the major arc is 30°.

3. : Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \text{ Reflex } \angle POR = 2\angle PQR$$

But $\angle PQR = 100^{\circ}$ [Given]

$$\therefore \text{ Reflex } \angle POR = 2 \times 100^{\circ} = 200^{\circ}$$

Since, $\angle POR + \text{reflex } \angle POR = 360^{\circ}$

$$\Rightarrow \angle POR = 360^{\circ} - 200^{\circ} \Rightarrow \angle POR = 160^{\circ}$$

In $\triangle POR$, $OP = OR$ [Radii of the same circle]

$$\therefore \angle OPR = \angle ORP$$
 ...(i)
[\because Angles opposite to equal sides of a triangle are equal.]
Also, $\angle OPR + \angle ORP + \angle POR = 180^{\circ}$
[\because Sum of the angles of a triangle is 180^{\circ}]

$$\Rightarrow \angle OPR + \angle OPR + 160^{\circ} = 180^{\circ}$$
 [From (i)]

$$\Rightarrow \angle OPR = 180^{\circ} - 160^{\circ} = 20^{\circ}$$

$$\Rightarrow \angle OPR = \frac{20^{\circ}}{2} = 10^{\circ}$$

4. In $\triangle ABC$, $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$
[By angle sum property of a triangle]

$$\Rightarrow \angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\therefore \text{ Angles in the same segment are equal.}$$

 $\therefore \quad \angle BDC = \angle BAC \Rightarrow \angle BDC = 80^{\circ}$

[Given, radius = 20 m]

4

MtG 100 PERCENT Mathematics Class-9

In $\triangle ECD$, $\angle BEC = \angle EDC + \angle ECD$ 5. [:: Sum of interior opposite angles of a triangle is equal to exterior angle] $130^\circ = \angle EDC + 20^\circ$ \rightarrow $\angle EDC = 130^{\circ} - 20^{\circ} = 110^{\circ} \Rightarrow \angle BDC = 110^{\circ}$ \Rightarrow Angles in the same segment are equal. ÷ $\angle BAC = \angle BDC \implies \angle BAC = 110^{\circ}$ ÷. : Angles in the same segment of a circle are equal. 6. $\angle BAC = \angle BDC$ *.*.. $\angle BDC = 30^{\circ}$ \Rightarrow Also, $\angle DBC = 70^{\circ}$ [Given] In ΔBCD , $\angle BCD + \angle DBC + \angle CDB = 180^{\circ}$ [By angle sum property of a triangle] $\angle BCD + 70^{\circ} + 30^{\circ} = 180^{\circ}$ $\angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ \Rightarrow Now, in $\triangle ABC$, AB = BC $\therefore \angle BCA = \angle BAC$ [:: Angles opposite to equal sides of a triangle are equal] $\Rightarrow \angle BCA = 30^{\circ}$ [:: $\angle BAC = 30^{\circ}$] Now, $\angle BCA + \angle ECD = \angle BCD$ \Rightarrow 30° + $\angle ECD = 80°$ $\angle ECD = 80^{\circ} - 30^{\circ} = 50^{\circ}$ \Rightarrow Let ABCD is a cyclic quadrilateral and its diagonals 7. AC and BD intersect at O. Since, AC and BD are diameters. $\Rightarrow AC = BD$...(i) [:: All diameters of a circle are equal] Also, $\angle BAD = 90^{\circ}$ [:: Angle in a semi-circle is 90°] Similarly, $\angle ABC = 90^\circ$, $\angle BCD = 90^\circ$ and $\angle CDA = 90^{\circ}$ Now, in right $\triangle ABC$ and right $\triangle BAD$, we have AC = BD[From (i)] AB = BA[Common] [Each equal to 90°] $\angle ABC = \angle BAD$ [By RHS congruency criteria] ÷. $\Delta ABC \cong \Delta BAD$ $\Rightarrow BC = AD$ [By C.P.C.T.] Similarly, AB = DCThus, the cyclic quadrilateral ABCD is such that its opposite sides are equal and each of its angle is right angle. *.*.. ABCD is a rectangle. We have, a trapezium ABCD such that AB || CD and 8. AD = BC.Let us draw *BE* || *AD* such that *ABED* is a parallelogram.

: The opposite angles of a parallelogram are equal. $\therefore \ \angle BAD = \angle BED \qquad \dots (i)$

and
$$AD = BE$$
 ...(ii)
[Opposite sides of a parallelogram]
But $AD = BC$ [Given] ...(iii)
 \therefore From (ii) and (iii), we have

BE = BC $\Rightarrow \angle BEC = \angle BCE \dots (iv)$

[:: Angles opposite to equal sides of a triangle are equal]

Now, $\angle BED + \angle BEC = 180^{\circ}$ [Linear pair] $\Rightarrow \angle BAD + \angle BCE = 180^{\circ}$ [Using (i) and (iv)] *i.e.* A pair of opposite angles of quadrilateral *ABCD* is 180°.

 \Rightarrow Trapezium *ABCD* is cyclic.

9. Since, angles in the same segment of a circle are equal.

 $\therefore \ \angle ACP = \angle ABP \qquad ...(i)$ Similarly, $\angle QCD = \angle QBD \qquad ...(ii)$ Since, $\angle ABP = \angle QBD \qquad [Vertically opposite angles]$ $\therefore From (i) and (ii), we have$

 $\therefore \quad \text{From (i) and (i)} \\ \angle ACP = \angle QCD$

10. We have, $\triangle ABC$ and two circles described with diameter as AB and AC respectively. They intersect at a point D, other than A. Let us join A and D.

...(i)

...(ii)

 \therefore *AB* is a diameter and $\angle ADB$ is an angle formed in a semicircle.

 $\Rightarrow \angle ADB = 90^{\circ}$

Similarly, $\angle ADC = 90^{\circ}$

Adding (i) and (ii), we have

 $\angle ADB + \angle ADC = 90^{\circ} + 90^{\circ} = 180^{\circ}$

i.e., B, D and C are collinear points.

 \Rightarrow BC is a straight line. Thus, D lies on BC.

11. We have, $\triangle ABC$ and $\triangle ADC$ such that they are having *AC* as their common hypotenuse.

 \therefore AC is a hypotenuse and $\angle ADC = 90^\circ = \angle ABC$

:. Both the triangles are in semicircle.

Case-1 : If both the triangles are in the same semicircle.

 \Rightarrow *A*, *B*, *C* and *D* are concyclic. Join *BD*.

Now, *DC* is a chord and $\angle CAD$ and $\angle CBD$ are formed in the same segment. $\Rightarrow \angle CAD = \angle CBD$

Case-2: If both the triangles are not in same semicircle.

 \Rightarrow *A*, *B*, *C* and *D* are concyclic. Join *BD*.

Now, *DC* is a chord and $\angle CAD$ and $\angle CBD$ are formed in the same segment. $\Rightarrow \angle CAD = \angle CBD$

12. We have a cyclic parallelogram *ABCD*.

Since, *ABCD* is a cyclic quadrilateral.

$$\therefore \quad \angle A + \angle C = 180^{\circ} \qquad \dots (i)$$

But $\angle A = \angle C \qquad \dots (ii)$

From (i) and (ii), we have D_{-}

 $\angle A = \angle C = 90^{\circ}$ Similarly, $\angle B = \angle D = 90^{\circ}$

Similarly, $\angle B = \angle D = 90$

R

 \Rightarrow Each angle of the parallelogram *ABCD* is 90°.

Thus, ABCD is a rectangle.

EXERCISE - 10.6

1. Given : Two circles with centres *O* and *O'* respectively such that they intersect each other at *P* and *Q*.

To prove : $\angle OPO' = \angle OQO'$. **Construction** : Join *OP*, *O'P*, *OQ*, *O'Q* and *OO'*. **Proof** : In $\triangle OPO'$ and $\triangle OQO'$, we have OP = OQ [Radii of the same circle] O'P = O'Q [Radii of the same circle] OO' = OO' [Common] $\therefore \ \triangle OPO' \cong \triangle OQO'$ [By SSS congruency criteria] $\Rightarrow \ \angle OPO' = \angle OQO'$ [By C.P.C.T.]

2. We have a circle with centre *O*, *AB* \parallel *CD* and the perpendicular distance between *AB* and *CD* is 6 cm and *AB* = 5 cm, *CD* = 11 cm.

Let 'r' be the radius of the circle. Let us draw $OP \perp AB$ and $OQ \perp CD$. Join OA and OC. Let OQ = x cm

 $\therefore OP = (6 - x) \text{ cm}$

The perpendicular drawn from the centre of a circle to a chord bisects the chord.

:.
$$AP = \frac{1}{2}AB = \frac{1}{2} \times 5 = \frac{5}{2}$$
 cm,
 $CQ = \frac{1}{2}CD = \frac{1}{2} \times 11 = \frac{11}{2}$ cm

In ΔCQO , we have $CO^2 = CQ^2 + OQ^2$

$$\Rightarrow r^2 = \left(\frac{11}{2}\right)^2 + x^2 \Rightarrow r^2 = \frac{121}{4} + x^2 \qquad \dots (i)$$

In $\triangle APO$, we have $AO^2 = AP^2 + OP^2$

$$\Rightarrow r^{2} = \left(\frac{5}{2}\right)^{2} + (6-x)^{2}$$

$$\Rightarrow r^{2} = \frac{25}{4} + [36 - 12x + x^{2}]$$

From (i) and (ii), we have
...(ii)

 $\frac{25}{4} + 36 - 12x + x^2 = \frac{121}{4} + x^2$ $\Rightarrow -12x = \frac{121}{4} - \frac{25}{4} - 36$ $\Rightarrow 12x = 12$ $\Rightarrow x = 1$ Substituting the value of x in (i), we get $r^2 = \frac{121}{4} + 1 = \frac{125}{4} \Rightarrow r = \frac{5\sqrt{5}}{2} \text{ cm}$ $[\because r \neq -\frac{5\sqrt{5}}{2}, \text{ as radius can't be negative}]$ Thus, the radius of the circle is $\frac{5\sqrt{5}}{2}$ cm. **3.** We have a circle with centre *O*. Parallel chords *AB* and *CD* are such that the smaller chord is 4 cm away from the centre.

Let *r* be the radius of circle.

Draw $OP \perp AB$ and join OA and OC. We know that, perpendicular from the centre of a circle to a chord bisects the chord.

$$\therefore \quad AP = \frac{1}{2}AB = \frac{1}{2}(6 \text{ cm}) = 3 \text{ cm}$$

Similarly, $CQ = \frac{1}{2}CD = \frac{1}{2}(8 \text{ cm}) = 4 \text{ cm}$

Now in $\triangle OPA$, we have $OA^2 = OP^2 + AP^2$

$$\Rightarrow r^2 = 4^2 + 3^2 \Rightarrow r^2 = 16 + 9 = 25$$
$$\Rightarrow r = \sqrt{25} = 5 \text{ cm}$$

[:: $r \neq -5$, as distance cannot be negative] Again, in ΔCQO , we have $OC^2 = OQ^2 + CQ^2$

$$\Rightarrow r^2 = OQ^2 + 4^2 \Rightarrow OQ^2 = r^2 - 4^2 = 5^2 - 4^2 [\because r = 5 \text{ cm}]$$
$$\Rightarrow OQ^2 = 25 - 16 = 9$$

$$\Rightarrow OQ = \sqrt{9} = 3 \text{ cm}$$

The distance of the other chord (*CD*) from the centre is 3 cm.

Note : In case we take the two parallel chords on either side of the centre, then

In
$$\triangle POA$$
, $OA^2 = OP^2 + PA^2$
 $\Rightarrow r^2 = 4^2 + 3^2 = 5^2$
 $\Rightarrow r = 5 \text{ cm}$
In $\triangle QOC$, $OC^2 = CQ^2 + OQ^2$
 $\Rightarrow r^2 = 4^2 + OQ^2$
 $\Rightarrow OQ^2 = r^2 - 4^2 = 5^2 - 4^2 = 9$
 $\Rightarrow OQ = 3 \text{ cm}$

4. Given : $\angle ABC$ such that when we produce arms *BA* and *BC*, they make two equal chords *AD* and *CE*.

To prove :
$$\angle ABC = \frac{1}{2}(\angle DOE - \angle AOC)$$

Construction : Join *AC*, *DE* and *AE*. **Proof :** Since an exterior angle of a triangle is equal to the sum of interior opposite angles.

$$\therefore$$
 In ΔBAE , we have

$$\angle DAE = \angle ABC + \angle AEC$$
 ...(i)

The chord *DE* subtends $\angle DOE$ at the centre and $\angle DAE$ in the remaining part of the circle.

$$\therefore \quad \angle DAE = \frac{1}{2} \angle DOE \qquad \qquad \dots (ii)$$

Similarly, $\angle AEC = \frac{1}{2} \angle AOC$

From (i), (ii) and (iii), we have

$$\frac{1}{2} \angle DOE = \angle ABC + \frac{1}{2} \angle AOC$$
$$\Rightarrow \ \angle ABC = \frac{1}{2} \angle DOE - \frac{1}{2} \angle AOC$$
$$\Rightarrow \ \angle ABC = \frac{1}{2} [\angle DOE - \angle AOC]$$

MtG 100 PERCENT Mathematics Class-9

 $\Rightarrow \ \ \angle ABC = \frac{1}{2} \ [(Angle subtended by the chord$ *DE*at the centre) - (Angle subtended by the chord*AC*at the centre)]

$$\Rightarrow \angle ABC = \frac{1}{2}$$
 [Difference of the angles subtended by
2 the chords *DE* and *AC* at the centre]

5. Let *ABCD* be a rhombus whose diagonals *AC* and *BD* intersect at *E*. Let *O* be centre of the circle with diameter *AB*. We know that the diagonals of a rhombus intersect each other at right angle.

[Given]

...(ii)

...(2)

:..

 $\Rightarrow \angle AEB = 90^{\circ}$ *i.e.*, $\angle AEB$ is in semi-circle.

 \Rightarrow Circle with *AB* as diameter passes through *E i.e.*, the point of intersection of its diagonals.

6. Given : A circle passing through *A*, *B* and *C* is drawn such that it intersects *CD* at *E*.

To prove : AE = AD

Construction : Join AE.

Proof : *ABCE* is a cyclic quadrilateral

 $\therefore \quad \angle AEC + \angle B = 180^{\circ} \qquad \dots (i)$

· Opposite angles of a cyclic quadrilateral are supplementary]

...(iii)

...(iv)

But *ABCD* is a parallelogram.

 $\therefore \ \angle D = \angle B$

[: Opposite angles of a parallelogram are equal] From (i) and (ii), we have

 $\angle AEC + \angle D = 180^{\circ}$ But $\angle AEC + \angle AED = 180^{\circ}$

[Linear pair] From (iii) and (iv), we have

 $\angle D = \angle AED$

i.e., The base angles of $\triangle ADE$ are equal.

 \therefore Opposite sides must be equal.

 $\Rightarrow AD = AE$

7. **Given** : A circle with centre at *O*. Two chords *AC* and *BD* are such that they bisect each other. Let their point of intersection be *O*.

To prove : (i) *AC* and *BD* are diameters.

(ii) ABCD is a rectangle.

Construction : Join *AB*, *BC*, *CD* and *DA*. **Proof** : (i) In $\triangle AOB$ and $\triangle COD$, we have

AO = CO	[Radii of same circle]
BO = DO	[Radii of same circle]
$\angle AOB = \angle COD$	[Vertically opposite angles]
$\therefore \Delta AOB \cong \Delta COD$	[By SAS congruency criteria]
$\Rightarrow AB = CD$	[By C.P.C.T.]

 \Rightarrow arc *AB* = arc *CD* ...(1) [:: If two chords are equal, then their corresponding arcs are equal (congruent)]

Similarly, arc AD = arc BCAdding (1) and (2), we get

$$\operatorname{arc} AB + \operatorname{arc} AD = \operatorname{arc} CD + \operatorname{arc} BC$$

 $\Rightarrow \widehat{B}A\widehat{D} = \widehat{B}C\widehat{D}$

BD divides the circle into two equal parts

 \therefore *BD* is a diameter. Similarly, *AC* is a diameter.

(ii) $\Delta AOB \cong \Delta COD$

 $\Rightarrow \angle OAB = \angle OCD$

 $\Rightarrow \angle CAB = \angle ACD \Rightarrow AB \parallel DC$

Similarly, $AD \parallel BC$

: *ABCD* is a parallelogram

Since, opposite angles of a parallelogram are equal

 $\therefore \angle DAB = \angle DCB$

But $\angle DAB + \angle DCB = 180^{\circ}$

[Sum of the opposite angles of a cyclic quadrilateral is 180°]

 $\Rightarrow \angle DAB = 90^{\circ} = \angle DCB$

Thus, *ABCD* is a rectangle.

8. **Given :** A triangle *ABC* inscribed in a circle, such that bisectors of $\angle A$, $\angle B$ and $\angle C$ intersect the circumcircle at *D*, *E* and *F* respectively.

To prove : Angles of $\triangle DEF$ are $90^\circ - \frac{1}{2} \angle A$, $90^\circ - \frac{1}{2} \angle B$ and $90^\circ - \frac{1}{2} \angle C$.

Construction : Join *DE*, *EF* and *FD*.

Proof: Since, angles in the same segment are equal.

∠ <mark>FD</mark> A = ∠FCA	(i)
$\angle EDA = \angle EBA$	(ii)

Adding (i) and (ii), we have

 $\angle FDA + \angle EDA = \angle FCA + \angle EBA$

Similarly,
$$\angle FED = \left(90^\circ - \frac{\angle B}{2}\right)$$

and
$$\angle EFD = \left(90^\circ - \frac{\angle C}{2}\right)$$

Thus, the angles of ΔDEF are

$$\left(90^{\circ} - \frac{\angle A}{2}\right), \left(90^{\circ} - \frac{\angle B}{2}\right) \text{ and } \left(90^{\circ} - \frac{\angle C}{2}\right)$$

9. Given : Two congruent circles such that they intersect each other at *A* and *B*. A line passing through *A*, meets the circles at *P* and *Q*.

To prove : BP = BQ

Construction : Join AB.

C

[From part (i)] [By C.P.C.T.]

Circles

Proof : Since, angles subtended by equal chords in the congruent circles are equal.

 $\Rightarrow \angle APB = \angle AQB$ Now, in $\triangle PBQ$, we have

$$\angle APB = \angle AQB$$

 $\Rightarrow PB = BQ$ [Sides opposite to equal angles of a triangle are equal]

10. Given: $\triangle ABC$ with O as centre of its circumcircle. The perpendicular bisector of *BC* passes through *O*. Suppose it cut circumcircle at *P*. **To prove :** The perpendicular bisector of *BC* and bisector of $\angle A$ of $\triangle ABC$ intersect at *P*.

Construction : Join *OB* and *OC*.

Proof : In order to prove that the perpendicular bisector of *BC* and bisector of $\angle A$ of $\triangle ABC$ intersect at *P*, it is sufficient to show that *AP* is bisector of $\angle A$ of $\triangle ABC$. Let arc *BC* makes angle θ on the circumference

 $\therefore \ \angle BOC = 2\theta \qquad [Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]$

Also, in $\triangle BOC$, OB = OC and OP is perpendicular bisector of *BC*.

So, $\angle BOP = \angle COP = \theta$

Arc *CP* makes angle θ at *O*, so it will make angle $\frac{\theta}{2}$ at circumference.

So,
$$\angle CAP = \frac{1}{2}$$

Hence, *AP* is angle bisector of $\angle A$ of $\triangle ABC$.

mtg BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information