Circles

.NCERT focus

 SOLUTIONS
EXERCISE - 10.1

1. (i) interior
(ii) exterior
(iii) diameter
(iv) semicircle
(v) chord
(vi) three
2. (i) True [All points on the circle are equidistant from the centre.]
(ii) False [A circle can have an infinite number of equal chords.]
(iii) False [Each part will be less than a semicircle.]
(iv) True [Diameter $=2 \times$ Radius]
(v) False [The region between the chord and its corresponding arc is a segment.]
(vi) True [A circle can be drawn on a paper as it is two dimensional figure.]

EXERCISE - 10.2

1. Given : Two congruent circles with centres O and O^{\prime} and radii r having chords $A B$ and $C D$ respectively, such that $A B=C D$.
To Prove : $\angle A O B=\angle C O^{\prime} D$

Proof: In $\triangle A O B$ and $\triangle C O^{\prime} D$, we have
$A B=C D$
[Given]
$O A=O^{\prime} C$
$O B=O^{\prime} D$
$\therefore \quad \triangle A O B \cong \triangle C O^{\prime} D$
[By SSS congruency criteria]
$\Rightarrow \angle A O B=\angle C O^{\prime} D$
2. Given : Two congruent circles with centres O and
O^{\prime} and radii r having chords $A B$ and $C D$ respectively,
such that $\angle A O B=\angle C O^{\prime} D$.

To Prove : $A B=C D$
Proof: In $\triangle A O B$ and $\triangle C O^{\prime} D$, we have $O A=O^{\prime} C$
$\angle A O B=\angle C O^{\prime} D$
$O B=O^{\prime} D$
[Each equal to r]
[Given]
[Each equal to r]
$\therefore \quad \triangle A O B \cong \triangle C O^{\prime} D$
Hence, $A B=C D$
[By SAS congruency criteria]
[By C.P.C.T.]

EXERCISE - 10.3

1. Let us draw different pairs of circles as shown below:

(i)

(ii)

(iii)

We have,

In figure	Maximum number of common points
(i)	Zero
(ii)	One
(iii)	Two

Thus, two circles can have at most two points in common.

2. Steps of construction :

Step I. Take any three points on the given circle. Let these points be A, B and C.
Step II. Join $A B$ and $B C$.
Step III. Draw the perpendicular bisector PQ of $A B$.
Step IV. Draw the perpendicular bisector $R S$ of $B C$ such that it
 intersects $P Q$ at O.
Thus, ' O ' is the required centre of the given circle.
3. We have two circles with centres O and O^{\prime}, intersecting at A and B.
$\therefore \quad A B$ is the common chord of two circles and $O O^{\prime}$ is the line segment joining their centres. Let

$O O^{\prime}$ and $A B$ intersect each other at M.
\therefore To prove that $O O^{\prime}$ is the perpendicular bisector of $A B$, we join $O A, O B, O^{\prime} A$ and $O^{\prime} B$.
Now, in $\triangle O A O^{\prime}$ and $\triangle O B O^{\prime}$, we have
$O A=O B$
$O^{\prime} A=O^{\prime} B$
$O O^{\prime}=O O^{\prime}$
$\therefore \quad \triangle O A O^{\prime} \cong \triangle O B O^{\prime}$
$\Rightarrow \quad \angle 1=\angle 2$
[Radii of the same circle]
[Radii of the same circle]
[Common]
[By SSS congruency criteria]
[By C.P.C.T.]
Now, in $\triangle A O M$ and $\triangle B O M$, we have
$O A=O B$
[Radii of the same circle]
$O M=O M$
[Common]
$\angle 1=\angle 2$
$\therefore \quad \triangle A O M \cong \triangle B O M$
$\Rightarrow \quad \angle 3=\angle 4$
But $\angle 3+\angle 4=180^{\circ}$
$\therefore \quad \angle 3=\angle 4=90^{\circ} \Rightarrow A M \perp O O^{\prime}$
Also $A M=B M$
$\Rightarrow \quad M$ is the mid-point of $A B$.
Thus, $O O^{\prime}$ is the perpendicular bisector of $A B$.

EXERCISE - 10.4

1. We have two intersecting circles with centres at O and O^{\prime} respectively. Let $P Q$ be the common chord.
\because In two intersecting circles, the line joining their centres is perpendicular bisector of the common chord.

$\therefore \quad \angle O L P=\angle O L Q=90^{\circ}$ and $P L=L Q$
Now, in right $\triangle O L P$, we have
$P L^{2}+O L^{2}=O P^{2} \Rightarrow P L^{2}+(4-x)^{2}=5^{2}$
$\Rightarrow P L^{2}=5^{2}-(4-x)^{2}$
$\Rightarrow P L^{2}=25-16-x^{2}+8 x$
$\Rightarrow \quad P L^{2}=9-x^{2}+8 x$
Again, in $\triangle O^{\prime} L P$, we have
$P L^{2}=P O^{\prime 2}-L O^{\prime 2}=3^{2}-x^{2}=9-x^{2}$
From (i) and (ii), we have
$9-x^{2}+8 x=9-x^{2}$
$\Rightarrow 8 x=0 \Rightarrow x=0$
$\Rightarrow \quad L$ and O^{\prime} coincide.
$\therefore \quad P Q$ is a diameter of the smaller circle.
$\Rightarrow P L=3 \mathrm{~cm}$
But $P L=L Q \quad \therefore L Q=3 \mathrm{~cm}$
$\therefore P Q=P L+L Q=3 \mathrm{~cm}+3 \mathrm{~cm}=6 \mathrm{~cm}$
$\therefore \quad$ Length of the common chord $=6 \mathrm{~cm}$
2. Given : A circle with centre O. Equal chords $A B$ and $C D$ intersect at E.
To prove : $A E=D E$ and $C E=B E$
Construction : Draw $O M \perp A B$
and $O N \perp C D$. Join $O E$.

Proof: Since $A B=C D$
[Given]
$\therefore O M=O N \quad[\because$ Equal chords of a circle are equidistant from the centre]
Now, in $\triangle O M E$ and $\triangle O N E$, we have
$\angle O M E=\angle O N E$
[Each equal to 90°]
$O M=O N$
$O E=O E$
[Proved above]
[Common]
$\therefore \quad \triangle O M E \cong \triangle O N E$
[By RHS congruency criteria]
$\Rightarrow \quad M E=N E$
[By C.P.C.T.]
Adding $A M$ on both sides, we get
$A M+M E=A M+N E$
$\Rightarrow \quad A E=D N+N E$
$\left[\because A B=C D \Rightarrow \frac{1}{2} A B=\frac{1}{2} D C \Rightarrow A M=D N\right]$
$\Rightarrow \quad A E=D E$
$\Rightarrow \quad A B-B E=C D-C E$
$\Rightarrow \quad B E=C E[\because A B=C D]$
From (i) and (ii), we have $A E=D E$ and $C E=B E$
3. Given : A circle with centre O and equal chords $A B$ and $C D$ are intersecting at E.
To prove : $\angle O E A=\angle O E D$
Construction : Draw $O M \perp A B$
and $O N \perp C D$.
Proof : In right $\triangle O M E$ and right $\triangle O N E$, $O M=O N \quad[\because$ Equal chords of a circle are equidistant from the centre] $O E=O E$

[Common]
$\angle O M E=\angle O N E$
$\therefore \quad \triangle O M E \cong \triangle O N E$
[By RHS congruency criteria]
$\therefore \quad \angle O E M=\angle O E N$
[By C.P.C.T.]
$\Rightarrow \angle O E A=\angle O E D$
4. Given : Two concentric circles with centre O. Let a line ' l ' intersects the outer circle at A and D and the inner circle at B and C.
To prove : $A B=C D$.
Construction : Draw
$O M \perp l$.
Proof : For the outer circle, $O M \perp l$

$\therefore \quad A M=M D$
$[\because$ Perpendicular drawn from the centre of a circle to the chord bisects the chord] For the inner circle, $O M \perp l$
$\therefore \quad B M=M C$
$[\because$ Perpendicular drawn from the centre of a circle to the chord bisects the chord]
Subtracting (ii) from (i), we have
$A M-B M=M D-M C$
$\Rightarrow A B=C D$
5. Let the three girls Reshma, Salma and Mandip be positioned at R, S and M respectively on the circle of radius 5 m .
$R S=S M=6 \mathrm{~m}$ [Given]
$\because \quad$ Equal chords of a circle subtend equal angles at the centre.

$\therefore \quad \angle 1=\angle 2$
In $\triangle P O R$ and $\triangle P O M$, we have
$O P=O P$
[Common]
$O R=O M$
[Radii of the same circle]
$\angle 1=\angle 2$
[By (i)]
$\therefore \quad \triangle P O R \cong \triangle P O M \quad$ [By SAS congruency criteria]
$\therefore \quad P R=P M$ and $\angle O P R=\angle O P M \quad$ [By C.P.C.T.]
$\because \quad \angle O P R+\angle O P M=180^{\circ} \quad$ [Linear pair]
$\therefore \quad \angle O P R=\angle O P M=90^{\circ}$
$\Rightarrow \quad O P \perp R M$
Now, in $\triangle R S P$ and $\triangle M S P$, we have
$R S=M S$
$S P=S P$
$P R=P M$
$\therefore \quad \triangle R S P \cong \triangle M S P$
[By SSS congruency criteria]
$\Rightarrow \quad \angle R P S=\angle M P S$
[By C.P.C.T.]
But $\angle R P S+\angle M P S=180^{\circ}$
$\Rightarrow \quad \angle R P S=\angle M P S=90^{\circ}$
$\therefore \quad S P$ passes through O.
Let $O P=x \mathrm{~m} \quad \therefore S P=(5-x) \mathrm{m}$
$[\because$ Radius $=5 \mathrm{~m}]$
Now, in right $\triangle O P R$, we have
$x^{2}+R P^{2}=5^{2} \Rightarrow R P^{2}=5^{2}-x^{2}$
In right $\triangle S P R$, we have
$(5-x)^{2}+R P^{2}=6^{2}$
$\Rightarrow R P^{2}=6^{2}-(5-x)^{2}$
From (1) and (2), we have
$5^{2}-x^{2}=6^{2}-(5-x)^{2}$
$\Rightarrow 25-x^{2}=36-\left[25-10 x+x^{2}\right]$
$\Rightarrow-10 x+14=0 \Rightarrow 10 x=14$
$\Rightarrow \quad x=\frac{14}{10}=1.4$
Now, $R P^{2}=5^{2}-x^{2} \Rightarrow R P^{2}=25-(1.4)^{2}$
$\Rightarrow \quad R P^{2}=25-1.96=23.04 \mathrm{~m}$
$\therefore \quad R P=\sqrt{23.04}=4.8 \mathrm{~m}$
$\therefore \quad R M=2 R P=2 \times 4.8 \mathrm{~m}=9.6 \mathrm{~m}$
Thus, distance between Reshma and Mandip is 9.6 m .
6. Let Ankur, Syed and David are sitting at A, S and D respectively such that $A S=S D=A D$
i.e. $\triangle A S D$ is an equilateral triangle.

Let the length of each side of the equilateral triangle be
$2 x \mathrm{~m}$ and O be the centre of circle.
Draw $A M \perp S D$.
Since $\triangle A S D$ is an equilateral.
$\therefore \quad A M$ passes through O.
$\Rightarrow \quad S M=\frac{1}{2} S D=\frac{1}{2}(2 x)$
$\Rightarrow \quad S M=x \mathrm{~m}$

Now, in right $\triangle A S M$, we have
$A M^{2}+S M^{2}=A S^{2}$
$\Rightarrow A M^{2}=A S^{2}-S M^{2}=(2 x)^{2}-x^{2}=4 x^{2}-x^{2}=3 x^{2}$
$\Rightarrow \quad A M=\sqrt{3} x \mathrm{~m}$
Now, $O M=A M-O A=(\sqrt{3} x-20) \mathrm{m}$
[Given, radius $=20 \mathrm{~m}$]
Again, in right $\triangle O S M$, we have
$O S^{2}=S M^{2}+O M^{2}$
$\Rightarrow \quad 20^{2}=x^{2}+(\sqrt{3} x-20)^{2}$
$\Rightarrow \quad 400=x^{2}+3 x^{2}-40 \sqrt{3} x+400$
$\Rightarrow 4 x^{2}=40 \sqrt{3} x \Rightarrow x(4 x-40 \sqrt{3})=0$
$\Rightarrow \quad x=10 \sqrt{3}$

Now, $S D=2 x=2 \times 10 \sqrt{3}=20 \sqrt{3} \mathrm{~m}$
Thus, the length of the string of each phone $=20 \sqrt{3} \mathrm{~m}$

EXERCISE - 10.5

1. We have a circle with centre O, such that
$\angle A O B=60^{\circ}$ and $\angle B O C=30^{\circ}$
$\because \quad \angle A O C=\angle A O B+\angle B O C$
$\therefore \quad \angle A O C=60^{\circ}+30^{\circ}=90^{\circ}$
We know, angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\therefore \quad \angle A D C=\frac{1}{2}(\angle A O C)=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$
2. We have a circle having a chord $A B$ equal to radius of the circle.
$\therefore \quad A O=B O=A B$
$\Rightarrow \quad \triangle A O B$ is an equilateral triangle.
Since, each angle of an equilateral triangle is 60°.

$\Rightarrow \angle A O B=60^{\circ}$
Since, the arc $A C B$ makes reflex $\angle A O B=360^{\circ}-60^{\circ}$ $=300^{\circ}$ at the centre of the circle and $\angle A C B$ at a point on the minor arc of the circle.
$\therefore \quad \angle A C B=\frac{1}{2}[\operatorname{reflex} \angle A O B]=\frac{1}{2}\left[300^{\circ}\right]=150^{\circ}$
Hence, the angle subtended by the chord on the minor arc is 150°.
Similarly, $\angle A D B=\frac{1}{2}[\angle A O B]=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
Hence, the angle subtended by the chord on the major arc is 30°.
3. \because Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\therefore \quad$ Reflex $\angle P O R=2 \angle P Q R$
But $\angle P Q R=100^{\circ}$
[Given]
$\therefore \quad$ Reflex $\angle P O R=2 \times 100^{\circ}=200^{\circ}$
Since, $\angle P O R+$ reflex $\angle P O R=360^{\circ}$
$\Rightarrow \angle P O R=360^{\circ}-200^{\circ} \Rightarrow \angle P O R=160^{\circ}$
In $\triangle P O R, O P=O R \quad$ [Radii of the same circle]
$\therefore \quad \angle O P R=\angle O R P$
[\because Angles opposite to equal sides of a triangle are equal.]
Also, $\angle O P R+\angle O R P+\angle P O R=180^{\circ}$
[\because Sum of the angles of a triangle is 180°]
$\Rightarrow \quad \angle O P R+\angle O P R+160^{\circ}=180^{\circ}$
[From (i)]
$\Rightarrow 2 \angle O P R=180^{\circ}-160^{\circ}=20^{\circ}$
$\Rightarrow \angle O P R=\frac{20^{\circ}}{2}=10^{\circ}$
4. In $\triangle A B C, \angle A B C+\angle A C B+\angle B A C=180^{\circ}$
[By angle sum property of a triangle]
$\Rightarrow 69^{\circ}+31^{\circ}+\angle B A C=180^{\circ}$
$\Rightarrow \angle B A C=180^{\circ}-100^{\circ}=80^{\circ}$
$\because \quad$ Angles in the same segment are equal.
$\therefore \quad \angle B D C=\angle B A C \Rightarrow \angle B D C=80^{\circ}$
5. In $\triangle E C D, \angle B E C=\angle E D C+\angle E C D$
[\because Sum of interior opposite angles
of a triangle is equal to exterior angle]
$\Rightarrow 130^{\circ}=\angle E D C+20^{\circ}$
$\Rightarrow \angle E D C=130^{\circ}-20^{\circ}=110^{\circ} \Rightarrow \angle B D C=110^{\circ}$
$\because \quad$ Angles in the same segment are equal.
$\therefore \quad \angle B A C=\angle B D C \Rightarrow \angle B A C=110^{\circ}$
6. \because Angles in the same segment of a circle are equal.
$\therefore \quad \angle B A C=\angle B D C$
$\Rightarrow \quad \angle B D C=30^{\circ}$
Also, $\angle D B C=70^{\circ}$ [Given]
In $\triangle B C D$,
$\angle B C D+\angle D B C+\angle C D B=180^{\circ}$

[By angle sum property of a triangle]
$\Rightarrow \quad \angle B C D+70^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle B C D=180^{\circ}-100^{\circ}=80^{\circ}$
Now, in $\triangle A B C, A B=B C$
$\therefore \quad \angle B C A=\angle B A C$
[\because Angles opposite to equal sides of a triangle are equal]
$\Rightarrow \quad \angle B C A=30^{\circ}$
$\left[\because \angle B A C=30^{\circ}\right]$
Now, $\angle B C A+\angle E C D=\angle B C D$
$\Rightarrow \quad 30^{\circ}+\angle E C D=80^{\circ}$
$\Rightarrow \angle E C D=80^{\circ}-30^{\circ}=50^{\circ}$
7. Let $A B C D$ is a cyclic quadrilateral and its diagonals $A C$ and $B D$ intersect at O.
Since, $A C$ and $B D$ are diameters.
$\Rightarrow A C=B D$
$[\because$ All diameters of a circle are equal]
Also, $\angle B A D=90^{\circ}$
$\left[\because\right.$ Angle in a semi-circle is $\left.90^{\circ}\right]$
Similarly, $\angle A B C=90^{\circ}, \angle B C D=90^{\circ}$
and $\angle C D A=90^{\circ}$
Now, in right $\triangle A B C$ and right $\triangle B A D$, we have
$A C=B D$
$A B=B A$
[From (i)]

$\angle A B C=\angle B A D$
$\therefore \quad \triangle A B C \cong \triangle B A D$
[Common]
[Each equal to 90°]
$\Rightarrow \quad B C=A D$
[By RHS congruency criteria]
Similarly, $A B=D C$
Thus, the cyclic quadrilateral $A B C D$ is such that its opposite sides are equal and each of its angle is right angle.
$\therefore \quad A B C D$ is a rectangle.
8. We have, a trapezium $A B C D$ such that $A B \| C D$ and $A D=B C$.
Let us draw $B E \| A D$ such that $A B E D$ is a parallelogram.
$\because \quad$ The opposite angles of a parallelogram are equal.
$\therefore \quad \angle B A D=\angle B E D$
and $A D=B E$
[Opposite sides of a parallelogram]
But $A D=B C$ [Given]
$\therefore \quad$ From (ii) and (iii), we have $B E=B C \Rightarrow \angle B E C=\angle B C E \ldots$ (iv)

[\because Angles opposite to equal sides of a triangle are equal]

Now, $\angle B E D+\angle B E C=180^{\circ}$
$\Rightarrow \quad \angle B A D+\angle B C E=180^{\circ}$ i.e. A pair of opposite angles of quadrilateral $A B C D$ is 180°.
\Rightarrow Trapezium $A B C D$ is cyclic.
9. Since, angles in the same segment of a circle are equal.
$\therefore \quad \angle A C P=\angle A B P$
Similarly, $\angle Q C D=\angle Q B D$
Since, $\angle A B P=\angle Q B D \quad$ [Vertically opposite angles]
$\therefore \quad$ From (i) and (ii), we have
$\angle A C P=\angle Q C D$
10. We have, $\triangle A B C$ and two circles described with diameter as $A B$ and $A C$ respectively. They intersect at a point
D, other than A.

Let us join A and D.
$\because \quad A B$ is a diameter and $\angle A D B$ is an angle formed in a semicircle.
$\Rightarrow \angle A D B=90^{\circ}$
Similarly, $\angle A D C=90^{\circ}$
Adding (i) and (ii), we have
$\angle A D B+\angle A D C=90^{\circ}+90^{\circ}=180^{\circ}$
i.e., B, D and C are collinear points.
$\Rightarrow \quad B C$ is a straight line. Thus, D lies on $B C$.
11. We have, $\triangle A B C$ and $\triangle A D C$ such that they are having $A C$ as their common hypotenuse.
$\because \quad A C$ is a hypotenuse and $\angle A D C=90^{\circ}=\angle A B C$
$\therefore \quad$ Both the triangles are in semicircle.
Case-1 : If both the triangles are in the same semicircle.
$\Rightarrow \quad A, B, C$ and D are concyclic.
Join $B D$.
Now, $D C$ is a chord and $\angle C A D$ and
$\angle C B D$ are formed in the same segment.
$\Rightarrow \quad \angle C A D=\angle C B D$
Case-2 : If both the triangles are not in same semicircle.
$\Rightarrow \quad A, B, C$ and D are concyclic.
Join $B D$.
Now, $D C$ is a chord and $\angle C A D$ and
$\angle C B D$ are formed in the same segment.

$\Rightarrow \quad \angle C A D=\angle C B D$
12. We have a cyclic parallelogram $A B C D$.

Since, $A B C D$ is a cyclic quadrilateral.
$\therefore \quad \angle A+\angle C=180^{\circ}$
But $\angle A=\angle C$
[\because Opposite angles of a parallelogram are equal]
From (i) and (ii), we have
$\angle A=\angle C=90^{\circ}$
Similarly, $\angle B=\angle D=90^{\circ}$
\Rightarrow Each angle of the parallelogram $A B C D$ is 90°.
Thus, $A B C D$ is a rectangle.

EXERCISE - 10.6

1. Given : Two circles with centres O and O^{\prime} respectively such that they intersect each other at P and Q.

To prove: $\angle O P O^{\prime}=\angle O Q O^{\prime}$.
Construction : Join $O P, O^{\prime} P, O Q, O^{\prime} Q$ and $O O^{\prime}$.
Proof: In $\triangle O P O^{\prime}$ and $\triangle O Q O^{\prime}$, we have
$O P=O Q$
[Radii of the same circle]
$O^{\prime} P=O^{\prime} Q$
$O O^{\prime}=O O^{\prime}$
[Radii of the same circle]
[Common]
$\therefore \quad \triangle O P O^{\prime} \cong \triangle O Q O^{\prime}$
$\Rightarrow \angle O P O^{\prime}=\angle O Q O^{\prime}$
[By SSS congruency criteria]
2. W perpendicular distance between $A B$ and $C D$ is 6 cm and $A B=5 \mathrm{~cm}, C D=11 \mathrm{~cm}$.
Let ' r ' be the radius of the circle.
Let us draw $O P \perp A B$ and $O Q \perp C D$.
Join $O A$ and $O C$.
Let $O Q=x \mathrm{~cm}$
$\therefore \quad O P=(6-x) \mathrm{cm}$

\because The perpendicular drawn from the centre of a circle to a chord bisects the chord.

$$
\begin{aligned}
& \therefore \quad A P=\frac{1}{2} A B=\frac{1}{2} \times 5=\frac{5}{2} \mathrm{~cm} \text {, } \\
& C Q=\frac{1}{2} C D=\frac{1}{2} \times 11=\frac{11}{2} \mathrm{~cm}
\end{aligned}
$$

In $\triangle C Q O$, we have $C O^{2}=C Q^{2}+O Q^{2}$
$\Rightarrow r^{2}=\left(\frac{11}{2}\right)^{2}+x^{2} \Rightarrow r^{2}=\frac{121}{4}+x^{2}$
In $\triangle A P O$, we have $A O^{2}=A P^{2}+O P^{2}$
$\Rightarrow r^{2}=\left(\frac{5}{2}\right)^{2}+(6-x)^{2}$
$\Rightarrow r^{2}=\frac{25}{4}+\left[36-12 x+x^{2}\right]$
From (i) and (ii), we have

$$
\begin{aligned}
& \frac{25}{4}+36-12 x+x^{2}=\frac{121}{4}+x^{2} \\
& \Rightarrow \quad-12 x=\frac{121}{4}-\frac{25}{4}-36 \\
& \Rightarrow \quad 12 x=12 \\
& \Rightarrow \quad x=1
\end{aligned}
$$

Substituting the value of x in (i), we get
$r^{2}=\frac{121}{4}+1=\frac{125}{4} \Rightarrow r=\frac{5 \sqrt{5}}{2} \mathrm{~cm}$
$\left[\because r \neq-\frac{5 \sqrt{5}}{2}\right.$, as radius can't be negative]
Thus, the radius of the circle is $\frac{5 \sqrt{5}}{2} \mathrm{~cm}$.
3. We have a circle with centre O. Parallel chords $A B$ and $C D$ are such that the smaller chord is 4 cm away from the centre.
Let r be the radius of circle.
Draw $O P \perp A B$ and join $O A$ and $O C$. We know that, perpendicular from the centre of a circle to a chord bisects the chord.

$\therefore \quad A P=\frac{1}{2} A B=\frac{1}{2}(6 \mathrm{~cm})=3 \mathrm{~cm}$
Similarly, $C Q=\frac{1}{2} C D=\frac{1}{2}(8 \mathrm{~cm})=4 \mathrm{~cm}$
Now in $\triangle O P A$, we have $O A^{2}=O P^{2}+A P^{2}$
$\Rightarrow r^{2}=4^{2}+3^{2} \Rightarrow r^{2}=16+9=25$
$\Rightarrow \quad r=\sqrt{25}=5 \mathrm{~cm}$
[$\because r \neq-5$, as distance cannot be negative]
Again, in $\triangle C Q O$, we have $O C^{2}=O Q^{2}+C Q^{2}$
$\Rightarrow r^{2}=O Q^{2}+4^{2} \Rightarrow O Q^{2}=r^{2}-4^{2}=5^{2}-4^{2}[\because r=5 \mathrm{~cm}]$
$\Rightarrow O Q^{2}=25-16=9$
$\Rightarrow O Q=\sqrt{9}=3 \mathrm{~cm}$
The distance of the other chord $(C D)$ from the centre is 3 cm .
Note : In case we take the two parallel chords on either side of the centre, then
In $\triangle P O A, O A^{2}=O P^{2}+P A^{2}$
$\Rightarrow r^{2}=4^{2}+3^{2}=5^{2}$
$\Rightarrow \quad r=5 \mathrm{~cm}$
In $\triangle Q O C, O C^{2}=C Q^{2}+O Q^{2}$
$\Rightarrow r^{2}=4^{2}+O Q^{2}$
$\Rightarrow O Q^{2}=r^{2}-4^{2}=5^{2}-4^{2}=9$

$\Rightarrow O Q=3 \mathrm{~cm}$
4. Given : $\angle A B C$ such that when we produce arms $B A$ and $B C$, they make two equal chords $A D$ and $C E$.
To prove : $\angle A B C=\frac{1}{2}(\angle D O E-\angle A O C)$
Construction : Join $A C, D E$ and $A E$.
Proof : Since an exterior angle of a triangle is equal to the sum of interior opposite angles.
$\therefore \quad$ In $\triangle B A E$, we have
$\angle D A E=\angle A B C+\angle A E C$
The chord $D E$ subtends $\angle D O E$ at the centre and $\angle D A E$ in the remaining part of the circle.
$\therefore \quad \angle D A E=\frac{1}{2} \angle D O E$
Similarly, $\angle A E C=\frac{1}{2} \angle A O C$
From (i), (ii) and (iii), we have

$$
\begin{aligned}
& \frac{1}{2} \angle D O E=\angle A B C+\frac{1}{2} \angle A O C \\
\Rightarrow & \angle A B C=\frac{1}{2} \angle D O E-\frac{1}{2} \angle A O C \\
\Rightarrow \quad & \angle A B C=\frac{1}{2}[\angle D O E-\angle A O C]
\end{aligned}
$$

$\Rightarrow \quad \angle A B C=\frac{1}{2}$ [(Angle subtended by the chord $D E$ at the centre) - (Angle subtended by the chord $A C$ at the centre)]
$\Rightarrow \quad \angle A B C=\frac{1}{2}$ [Difference of the angles subtended by
5. Let $A B C D$ be a rhombus whose diagonals $A C$ and $B D$ intersect at E. Let O be centre of the circle with diameter $A B$. We know that the diagonals of a rhombus intersect each other at right angle.
$\Rightarrow \angle A E B=90^{\circ}$
i.e., $\angle A E B$ is in semi-circle.
\Rightarrow Circle with $A B$ as diameter passes through E i.e., the point of intersection of its diagonals.
6. Given : A circle passing through A, B and C is drawn such that it intersects $C D$ at E.
To prove : $A E=A D$
Construction : Join $A E$.
Proof : $A B C E$ is a cyclic quadrilateral
$\therefore \quad \angle A E C+\angle B=180^{\circ}$
$[\because$ Opposite angles of a cyclic quadrilateral are supplementary]
But $A B C D$ is a parallelogram.
[Given]
$\therefore \quad \angle D=\angle B$
[\because Opposite angles of a parallelogram are equal]
From (i) and (ii), we have
$\angle A E C+\angle D=180^{\circ}$
But $\angle A E C+\angle A E D=180^{\circ}$
[Linear pair]
From (iii) and (iv), we have
$\angle D=\angle A E D$
i.e., The base angles of $\triangle A D E$ are equal.
\therefore Opposite sides must be equal.
$\Rightarrow A D=A E$
7. Given : A circle with centre at O. Two chords $A C$ and $B D$ are such that they bisect each other. Let their point of intersection be O.
To prove : (i) $A C$ and $B D$ are diameters.
(ii) $A B C D$ is a rectangle.

Construction : Join $A B, B C, C D$ and $D A$.
Proof : (i) In $\triangle A O B$ and $\triangle C O D$, we have
$A O=C O$
[Radii of same circle]
$B O=D O$
$\angle A O B=\angle C O D$
$\therefore \quad \triangle A O B \cong \triangle C O D$
[Vertically opposite angles]
[By SAS congruency criteria]
$\Rightarrow \quad A B=C D$
[By C.P.C.T.]
$\Rightarrow \quad \operatorname{arc} A B=\operatorname{arc} C D \quad \ldots(1)[\because$ If two chords are equal, then their corresponding arcs are equal (congruent)]
Similarly, $\operatorname{arc} A D=\operatorname{arc} B C$
Adding (1) and (2), we get
$\operatorname{arc} A B+\operatorname{arc} A D=\operatorname{arc} C D+\operatorname{arc} B C$
$\Rightarrow \widehat{B A D}=\widehat{B C D}$
$B D$ divides the circle into two
equal parts
$\therefore \quad B D$ is a diameter.
Similarly, $A C$ is a diameter.
(ii) $\triangle A O B \cong \triangle C O D$
$\Rightarrow \quad \angle O A B=\angle O C D$
$\Rightarrow \angle C A B=\angle A C D \Rightarrow A B \| D C$

[From part (i)]
[By C.P.C.T.]

Similarly, $A D \| B C$
$\therefore \quad A B C D$ is a parallelogram
Since, opposite angles of a parallelogram are equal
$\therefore \quad \angle D A B=\angle D C B$
But $\angle D A B+\angle D C B=180^{\circ}$
[Sum of the opposite angles of a cyclic quadrilateral is 180°]
$\Rightarrow \angle D A B=90^{\circ}=\angle D C B$
Thus, $A B C D$ is a rectangle.
8. Given : A triangle $A B C$ inscribed in a circle, such that bisectors of $\angle A, \angle B$ and $\angle C$ intersect the circumcircle at D, E and F respectively.
To prove : Angles of $\triangle D E F$ are $90^{\circ}-\frac{1}{2} \angle A, 90^{\circ}-\frac{1}{2} \angle B$ and $90^{\circ}-\frac{1}{2} \angle C$.
Construction : Join $D E, E F$ and $F D$.
Proof : Since, angles in the same segment are equal.
$\therefore \quad \angle F D A=\angle F C A$
$\angle E D A=\angle E B A$
Adding (i) and (ii), we have

$$
\begin{align*}
& \angle F D A+\angle E D A=\angle F C A+\angle E B A \tag{ii}\\
\Rightarrow \quad & \angle F D E=\angle F C A+\angle E B A \\
& =\frac{1}{2} \angle C+\frac{1}{2} \angle B=\frac{1}{2}[\angle C+\angle B] \\
& =\frac{1}{2}\left[180^{\circ}-\angle A\right]=\left(90^{\circ}-\frac{\angle A}{2}\right)
\end{align*}
$$

Similarly, $\angle F E D=\left(90^{\circ}-\frac{\angle B}{2}\right)$

and $\angle E F D=\left(90^{\circ}-\frac{\angle C}{2}\right)$
Thus, the angles of $\triangle D E F$ are

$$
\left(90^{\circ}-\frac{\angle A}{2}\right),\left(90^{\circ}-\frac{\angle B}{2}\right) \text { and }\left(90^{\circ}-\frac{\angle C}{2}\right)
$$

9. Given : Two congruent circles such that they intersect each other at A and B. A line passing through A, meets the circles at P and Q.
To prove : $B P=B Q$
Construction : Join $A B$.

Proof : Since, angles subtended by equal chords in the congruent circles are equal.
$\Rightarrow \quad \angle A P B=\angle A Q B$
Now, in $\triangle P B Q$, we have

$$
\angle A P B=\angle A Q B
$$

$\Rightarrow \quad P B=B Q \quad$ [Sides opposite to equal angles of a triangle are equal]
10. Given: $\triangle A B C$ with O as centre of its circumcircle. The perpendicular bisector of $B C$ passes through O. Suppose it cut circumcircle at P.
To prove : The perpendicular bisector of $B C$ and bisector of $\angle A$ of $\triangle A B C$ intersect at P.
Construction : Join $O B$ and $O C$.

Proof: In order to prove that the perpendicular bisector of $B C$ and bisector of $\angle A$ of $\triangle A B C$ intersect at P, it is sufficient to show that $A P$ is bisector of $\angle A$ of $\triangle A B C$.
Let arc $B C$ makes angle θ on the circumference
$\therefore \quad \angle B O C=2 \theta \quad$ [Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle] Also, in $\triangle B O C, O B=O C$ and $O P$ is perpendicular bisector of $B C$.
So, $\angle B O P=\angle C O P=\theta$
Arc $C P$ makes angle θ at O, so it will make angle $\frac{\theta}{2}$ at
circumference. circumference.
So, $\angle C A P=\frac{\theta}{2}$
Hence, $A P$ is angle bisector of $\angle A$ of $\triangle A B C$.

mtG BEST SELLING BOOKS FOR CLASS 9

