Constructions

EXERCISE - 11.1

1. Steps of Construction :

Step I : Draw a ray $O A$.
Step II : Taking O as centre and suitable radius, draw a semicircle, cutting $\overrightarrow{O A}$ at B.
Step III : Keeping the
 radius same, and starting
from B, mark points C, D and E on the semicircle such that $\overparen{B C}=\overparen{C D}=\overparen{D E}$.
Step IV : Draw $\overrightarrow{O C}$ and $\overrightarrow{O D}$.
Step V : Draw $\overrightarrow{O F}$, the bisector of $\angle C O D$.
Then, $\angle A O F=90^{\circ}$

Justification :

Since, O is the centre of the semicircle and $\overparen{B C}=\overparen{C D}=\overparen{D E}$
$\Rightarrow \quad \angle B O C=\angle D O C=\angle D O E$
$[\because$ Equal arcs subtend equal angles at the centre]
Now, as $\angle B O C+\angle C O D+\angle D O E=180^{\circ}$
$\therefore \quad \angle B O C+\angle B O C+\angle B O C=180^{\circ}$
$\Rightarrow 3 \angle B O C=180^{\circ}$
$\Rightarrow \quad \angle B O C=60^{\circ}$
Similarly, $\angle C O D=60^{\circ}$ and $\angle D O E=60^{\circ}$
$\because \quad O F$ is the bisector of $\angle C O D$
$\therefore \angle C O F=\frac{1}{2} \angle C O D=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
Now, $\angle B O C+\angle C O F=60^{\circ}+30^{\circ}$
$\Rightarrow \angle B O F=90^{\circ}$ or $\angle A O F=90^{\circ}$

2. Steps of Construction :

Step I : Draw a ray $O A$.
Step II : Taking O as centre and suitable radius, draw a semicircle cutting $\overrightarrow{O A}$ at B.
Step III : Keeping the radius same and starting from B, mark points C, D and E on the semicircle such that $\overparen{B C}=\overparen{C D}=\overparen{D E}$.
Step IV : Draw $\overrightarrow{O C}$ and $\overrightarrow{O D}$.
Step V : Draw $\overrightarrow{O F}$, the angle bisector of $\angle B O C$.
Step VI : Draw $\overrightarrow{O G}$, the angle bisector of $\angle F O C$.
Then, $\angle B O G=45^{\circ}$ or $\angle A O G=45^{\circ}$
[. Equal arcs subtend equal
at the centre
Now, as $\angle B O C+\angle C O D+\angle D O E=180^{\circ}$
$\therefore \quad \angle B O C=60^{\circ}$
$\because \quad \overrightarrow{O F}$ is the bisector of $\angle B O C$.
$\therefore \angle B O F=\frac{1}{2} \angle B O C=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
Also, $\overrightarrow{O G}$ is the bisector of $\angle C O F$.
$\therefore \quad \angle F O G=\frac{1}{2} \angle C O F=\frac{1}{2}\left(30^{\circ}\right)=15^{\circ}$
Adding (i) and (ii), we get
$\angle B O F+\angle F O G=30^{\circ}+15^{\circ}=45^{\circ}$
$\Rightarrow \quad \angle B O G=45^{\circ}$
3. (i) Angle of 30°

Steps of Construction :
Step I : Draw a ray OA.
Step II : With O ascentre and suitable radius, draw an arc cutting $\overrightarrow{O A}$ at B.
Step III : With B as centre and the same
 radius as above, draw an arc cutting the previous arc at C.
Step IV : Join $\overrightarrow{O C}$ which gives $\angle B O C=60^{\circ}$.
Step V : Draw $\overrightarrow{O D}$, bisector of $\angle B O C$. Then, $\angle A O D=30^{\circ}$.
(ii) Angle of $22 \frac{1}{2}^{\circ}$

Steps of Construction :
Step I : Draw a ray $O A$.
Step II : With O as centre and suitable radius, draw an arc cutting $\overrightarrow{O A}$ at B.
Step III : Keeping the radius same and starting from B mark points C and D on the arc of step
 II such that $\overparen{B C}=\overparen{C D}$.

Step IV : Draw $\overrightarrow{O C}$ and $\overrightarrow{O D}$.
Step V : Draw $\overrightarrow{O E}$, the bisector of $\angle C O D$. Then, $\angle A O E=90^{\circ}$
Step VI : Draw $\overrightarrow{O F}$, the bisector of $\angle A O E$. Then, $\angle A O F=\frac{1}{2} \angle A O E=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$.
Step VII : Draw $\overrightarrow{O G}$, the bisect or of $\angle A O F$, then

$$
\angle A O G=\frac{1}{2} \angle A O F=\frac{1}{2}\left(45^{\circ}\right)=\left(22 \frac{1}{2}\right)^{\circ}
$$

(iii) Angle of 15°

Steps of Construction :

Step I: Draw a ray $O A$.
Step II : With O as centre and suitable radius, draw an arc cutting $\overrightarrow{O A}$ at B.
Step III : With B as centre and keeping the radius same, mark a point C on the previous arc and draw $\overrightarrow{O C}$.
Step IV : Draw $\overrightarrow{O D}$, the bisector of $\angle B O C$. Then,
$\angle A O D=\frac{1}{2} \angle B O C=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
Step V : Draw $\overrightarrow{O F}$, the bisector of $\angle A O D$. Then, $\angle A O E=\frac{1}{2} \angle A O D=\frac{1}{2}\left(30^{\circ}\right)=15^{\circ}$.

4. (i) Angle of 75°.

Steps of Construction :
Step I : Draw a ray OA.
Step II : With O as centre and suitable radius, draw an arc which cuts $\overrightarrow{O A}$ at B.
Step III : Keeping the radius same and starting from B, mark points C and D on the arc of step II such that $\overparen{B C}=\overparen{C D}$. Mark a point C on the previous arc.
Step IV : Draw $\overrightarrow{O C}$ and $\overrightarrow{O D}$.
Step V : Draw $\overrightarrow{O P}$, the bisector of $\angle C O D$. Then, $\angle C O P=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.
Step VI : Draw $\overrightarrow{O Q}$, the bisector of $\angle C O P$. Then, $\angle C O Q=15^{\circ}$.
Thus, $\angle B O Q=\angle B O C+\angle C O Q=60^{\circ}+15^{\circ}=75^{\circ}$
or $\angle A O Q=75^{\circ}$

(ii) Angle of 105°

Steps of Construction :

Step I: Draw a ray OA.
Step II : With O as centre and suitable radius, draw an arc which cuts $\overrightarrow{O A}$ at B.
Step III : Keeping the radius same and starting from B, mark points C and D on the arc of step II, such that $\overparen{B C}=\overparen{C D}$. Mark a point C on the arc of step II.
Step IV : Draw $\overrightarrow{O C}$ and $\overrightarrow{O D}$.
Step V : Draw $\overrightarrow{O P}$, the bisector of $\angle C O D$.
Step VI : Draw $\overrightarrow{O Q}$, the bisector of $\angle P O D$.
Then, $\angle A O Q=\angle A O P+\angle P O Q=90^{\circ}+15^{\circ}=105^{\circ}$.

(iii) Angle of 135°

Steps of Construction :
Step I : Draw a ray $O P$.
Step II : With O as centre O and suitable radius, draw an arc which cuts $\overrightarrow{O P}$ at A.
Step III : Keeping the radius same and starting from A, mark points Q, R and S on the arc of step II such that $\overparen{A Q}=\overparen{Q R}=\overparen{R S}$.
Step IV : Draw $\overrightarrow{O R}$ and $\overrightarrow{O S}$.
Step V : Draw $\overrightarrow{O L}$, the bisector of $\angle R O S$.
Step VI : Draw $\overrightarrow{O M}$, the bisector of $\angle R O L$.
Then, $\angle P O M=\angle P O R+\angle R O M=120^{\circ}+15^{\circ}=135^{\circ}$

5. Let us construct an equilateral triangle, each of whose side $=3 \mathrm{~cm}$ (say).

Steps of Construction :

Step I : Draw the line segment
$A B=3 \mathrm{~cm}$

Step II : Taking A as centre and radius equal to 3 cm , draw an arc.
Step III : Taking B as centre and radius equal to 3 cm , draw an arc cutting the previous arc at C.
Step IV: Join $A C$ and $B C$.
Then, $\triangle A B C$ is the required equilateral triangle.

Justification :

Clearly, $A C=B C=3 \mathrm{~cm}$
[Equal radii of arcs]
Thus, $A C=A B=B C=3 \mathrm{~cm}$
$\therefore \quad \triangle A B C$ is an equilateral triangle.

EXERCISE - 11.2

1. Steps of Construction :

Step I : Draw the base $B C=7 \mathrm{~cm}$.
Step II : At point B, construct $\angle C B X=75^{\circ}$.
Step III : From $\overrightarrow{B X}$, cut-off $B D=13 \mathrm{~cm}(=A B+A C)$.
Step IV : Join $D C$.
Step V : Draw perpendicular bisector of $C D$, which meets $B D$ at A.
Step VI : Join $A C$.
Then, $A B C$ is the required triangle.

2. Steps of Construction :

Step I: Draw the base $B C=8 \mathrm{~cm}$.
Step II : At point B, construct $\angle C B Y=45^{\circ}$.
Step III : From $\overrightarrow{B Y}$, cut-off $B D=3.5 \mathrm{~cm}(=A B-A C)$
Step IV : Join DC.
Step V : Draw perpendicular bisector of DC, which intersects $\overrightarrow{B Y}$ at A.
Step VI : Join $A C$.

Then, $A B C$ is the required triangle.

3. Steps of Construction :

Step I : Draw the base $Q R=6 \mathrm{~cm}$.
Step II : Construct a line $Y Q Y^{\prime}$ such that $\angle R Q Y=60^{\circ}$.
Step III : From $\overline{Q Y^{\prime}}$ cut-off $Q S=2 \mathrm{~cm}(=P R-P Q)$.
Step IV : Join $S R$.
Step V : Draw perpendicular bisector of $S R$, which intersects $Q Y$ at P.
Step VI : Join $P R$.

Then, $P Q R$ is the required triangle.

4. Steps of Construction :

Step I: Draw a line segment $A B=11 \mathrm{~cm}(=X Y+Y Z+Z X)$
Step II : Construct $\angle B A P=30^{\circ}$ and construct $\angle A B Q=$ 90°.
Step III : Draw $A R$, the bisector of $\angle B A P$ and draw $B S$, the bisector of $\angle A B Q$. Let $A R$ and $B S$ intersect at X.
Step IV : Draw perpendicular bisector of $A X$ and $B X$, which intersects $A B$ at Y and Z respectively.
Step V : Join $X Y$ and $X Z$.

Then, $X Y Z$ is the required triangle.
5. Steps of Construction : Step I: Draw base $B C=12 \mathrm{~cm}$. Step II : At point B, construct $\angle C B Y=90^{\circ}$.
Step III : Along $\overrightarrow{B Y}$, cut-off a line segment $B X=18 \mathrm{~cm}$.
Step IV : Join CX.
Step V : Draw $P Q$, perpendicular bisector of $C X$, which meets $B X$ at A.
Step VI : Join $A C$.
Then, $A B C$ is the required triangle.

mtG BEST SELLING BOOKS FOR CLASS 9

