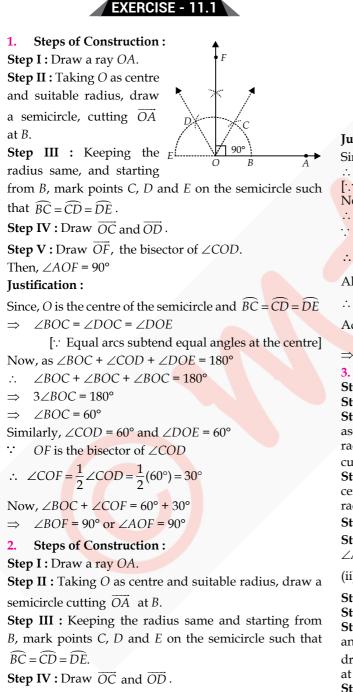
Constructions

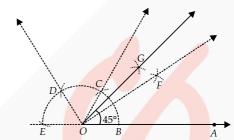
NCERT FOCUS

SOLUTIONS



Step V : Draw \overrightarrow{OF} , the angle bisector of $\angle BOC$.

Step VI : Draw \overrightarrow{OG} , the angle bisector of $\angle FOC$. Then, $\angle BOG = 45^{\circ}$ or $\angle AOG = 45^{\circ}$



Justification:

Since, *O* is the centre of the semicircle and $\widehat{BC} = \widehat{CD} = \widehat{DE}$ $\angle BOC = \angle COD = \angle DOE$

[:: Equal arcs subtend equal angles at the centre] Now, as $\angle BOC + \angle COD + \angle DOE = 180^{\circ}$

 $\angle BOC = 60^{\circ}$

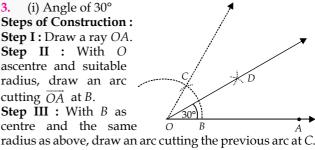
 \overrightarrow{OF} is the bisector of $\angle BOC$.

:.
$$\angle BOF = \frac{1}{2} \angle BOC = \frac{1}{2} (60^{\circ}) = 30^{\circ}$$
 ...(i)

Also, \overrightarrow{OG} is the bisector of $\angle COF$.

Adding (i) and (ii), we get $\angle BOF + \angle FOG = 30^\circ + 15^\circ = 45^\circ$ $\angle BOG = 45^{\circ}$ \Rightarrow

(i) Angle of 30° **Steps of Construction :** Step I : Draw a ray OA. Step II : With O ascentre and suitable radius, draw an arc cutting \overrightarrow{OA} at B. Step III : With B as centre and the same



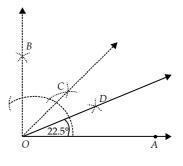
Step IV : Join \overrightarrow{OC} which gives $\angle BOC = 60^\circ$.

Step V : Draw \overrightarrow{OD} , bisector of $\angle BOC$. Then, $\angle AOD = 30^{\circ}$.

(ii) Angle of $22\frac{1}{2}$

Steps of Construction : Step I : Draw a ray OA. **Step II**: With *O* as centre and suitable radius, draw an arc cutting \overline{OA} at B.

Step III : Keeping the radius same and starting from B mark points C and *D* on the arc of step II such that $\widehat{BC} = \widehat{CD}$.



MtG 100 PERCENT Mathematics Class-9

Step IV : Draw \overrightarrow{OC} and \overrightarrow{OD} .

Step V : Draw \overrightarrow{OE} , the bisector of $\angle COD$. Then, $\angle AOE = 90^{\circ}$

Step VI : Draw \overrightarrow{OF} , the bisector of $\angle AOE$. Then, $\angle AOF = \frac{1}{2} \angle AOE = \frac{1}{2} (90^\circ) = 45^\circ$.

Step VII : Draw \overrightarrow{OG} , the bisect or of $\angle AOF$, then

$$\angle AOG = \frac{1}{2} \angle AOF = \frac{1}{2} (45^\circ) = \left(22\frac{1}{2}\right)^\circ.$$

(iii) Angle of 15°

Steps of Construction :

Step I : Draw a ray *OA*.

Step II : With *O* as centre and suitable radius, draw an arc cutting \overrightarrow{OA} at *B*.

Step III : With *B* as centre and keeping the radius same,

mark a point *C* on the previous arc and draw \overline{OC} .

Step IV : Draw \overrightarrow{OD} , the bisector of $\angle BOC$. Then,

$$\angle AOD = \frac{1}{2} \angle BOC = \frac{1}{2} (60^\circ) = 30^\circ$$

Step V : Draw \overrightarrow{OF} , the bisector of $\angle AOD$. Then,

$$\angle AOE = \frac{1}{2} \angle AOD = \frac{1}{2} (30^{\circ}) = 15^{\circ}.$$

4. (i) Angle of 75°.

Steps of Construction :

Step I : Draw a ray *OA*.

Step II : With *O* as centre and suitable radius, draw an arc which cuts \overrightarrow{OA} at *B*.

Step III : Keeping the radius same and starting from B, mark points C and D on the arc of step II such that

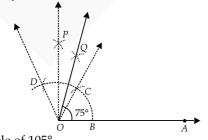
BC = CD. Mark a point *C* on the previous arc.

Step IV : $Draw \overrightarrow{OC}$ and \overrightarrow{OD} .

Step V : Draw \overline{OP} , the bisector of $\angle COD$. Then, $\angle COP = \frac{1}{2}(60^\circ) = 30^\circ$.

Step VI : Draw \overline{OQ} , the bisector of $\angle COP$. Then, $\angle COQ = 15^{\circ}$.

Thus, $\angle BOQ = \angle BOC + \angle COQ = 60^\circ + 15^\circ = 75^\circ$ or $\angle AOQ = 75^\circ$



Steps of Construction :

Step I : Draw a ray *OA*.

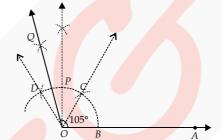
Step II : With *O* as centre and suitable radius, draw an arc which cuts \overrightarrow{OA} at *B*.

Step III : Keeping the radius same and starting from *B*, mark points *C* and *D* on the arc of step II, such that

BC = CD. Mark a point C on the arc of step II.

Step IV : Draw \overrightarrow{OC} and \overrightarrow{OD} .

Step V: Draw \overrightarrow{OP} , the bisector of $\angle COD$. **Step VI**: Draw \overrightarrow{OQ} , the bisector of $\angle POD$. Then, $\angle AOQ = \angle AOP + \angle POQ = 90^\circ + 15^\circ = 105^\circ$.



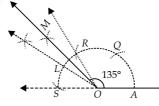
(iii) Angle of 135° **Steps of Construction : Step I :** Draw a ray *OP*.

Step II : With *O* as centre *O* and suitable radius, draw an arc which cuts \overrightarrow{OP} at *A*.

Step III : Keeping the radius same and starting from *A*, mark points *Q*, *R* and *S* on the arc of step II such that $\widehat{AQ} = \widehat{QR} = \widehat{RS}$.

Step IV : Draw \overrightarrow{OR} and \overrightarrow{OS} .

Step V : Draw \overrightarrow{OL} , the bisector of $\angle ROS$. **Step VI** : Draw \overrightarrow{OM} , the bisector of $\angle ROL$. Then, $\angle POM = \angle POR + \angle ROM = 120^\circ + 15^\circ = 135^\circ$



5. Let us construct an equilateral triangle, each of whose side = 3 cm (say).

Steps of Construction :

Step I : Draw the line segment *AB* = 3 cm

Step II : Taking *A* as centre and radius equal to 3 cm, draw an arc.

3 cm

Step III : Taking *B* as centre and radius equal to 3 cm, draw an arc cutting the previous arc at *C*.

Step IV : Join *AC* and *BC*.

Then, $\triangle ABC$ is the required equilateral triangle.

Justification :

Clearly, AC = BC = 3 cm [Equal radii of arcs] Thus, AC = AB = BC = 3 cm

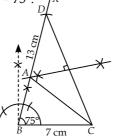
 $\therefore \quad \Delta ABC$ is an equilateral triangle.

(ii) Angle of 105°

EXERCISE - 11.2

1. Steps of Construction :

Step I : Draw the base BC = 7 cm. **Step II :** At point *B*, construct $\angle CBX = 75^{\circ}$ **Step III :** From \overline{BX} , cut-off BD = 13 cm (= AB + AC). **Step IV :** Join *DC*. **Step V :** Draw perpendicular bisector of *CD*, which meets *BD* at *A*. **Step VI :** Join *AC*. Then, *ABC* is the required triangle.



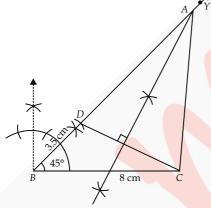
2. Steps of Construction :

Step I : Draw the base BC = 8 cm. **Step II :** At point *B*, construct $\angle CBY = 45^{\circ}$.

Step III : From \overrightarrow{BY} , cut-off BD = 3.5 cm (= AB - AC)**Step IV :** Join *DC*.

Step V : Draw perpendicular bisector of *DC*, which intersects \overline{BY} at *A*.

Step VI : Join AC.



Then, *ABC* is the required triangle.

3. Steps of Construction :

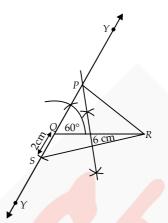
Step I : Draw the base QR = 6 cm.

Step II : Construct a line YQY' such that $\angle RQY = 60^{\circ}$.

Step III : From $\overline{QY'}$ cut-off QS = 2 cm (= *PR* – *PQ*). **Step IV :** Join *SR*.

Step V : Draw perpendicular bisector of *SR*, which intersects *QY* at *P*.

Step VI : Join PR.

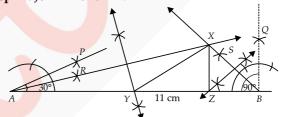


Then, *PQR* is the required triangle.

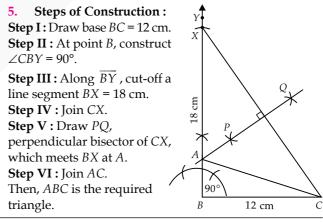
4. Steps of Construction :

Step I: Draw a line segment AB = 11 cm (= XY + YZ + ZX)**Step II**: Construct $\angle BAP = 30^{\circ}$ and construct $\angle ABQ = 90^{\circ}$.

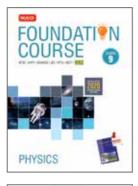
Step III : Draw *AR*, the bisector of $\angle BAP$ and draw *BS*, the bisector of $\angle ABQ$. Let *AR* and *BS* intersect at *X*. **Step IV :** Draw perpendicular bisector of *AX* and *BX*, which intersects *AB* at *Y* and *Z* respectively. **Step V :** Join *XY* and *XZ*.

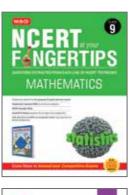


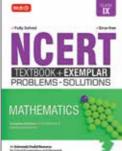
Then, *XYZ* is the required triangle.

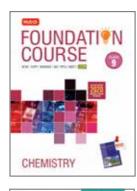


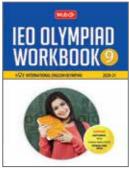
mtg BEST SELLING BOOKS FOR CLASS 9

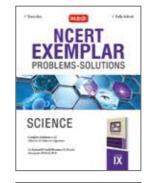


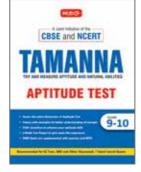


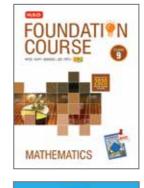


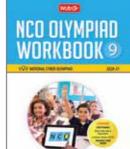


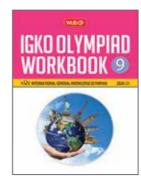


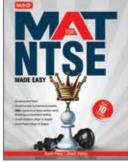


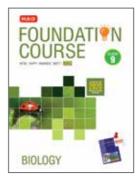




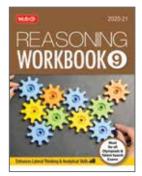












Visit www.mtg.in for complete information