Heron's Formula

EXERCISE - 12.1

1. Let each side of the equilateral triangle be a. Semi-perimeter of the triangle, $s=\frac{a+a+a}{2}=\frac{3 a}{2}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{s(s-a)(s-a)(s-a)}=\sqrt{s(s-a)^{3}}$
$=\sqrt{\frac{3 a}{2}\left(\frac{3 a}{2}-a\right)^{3}}=\sqrt{\frac{3 a}{2} \times\left(\frac{a}{2}\right)^{3}}$
$=\sqrt{\frac{3 a^{4}}{16}}=\frac{\sqrt{3}}{4} a^{2}$ sq. units.

Now, its perimeter is 180 cm .
$\therefore \quad a+a+a=180 \mathrm{~cm}$
$\Rightarrow 3 a=180 \Rightarrow a=\frac{180}{3}=60 \mathrm{~cm}$
Thus, area of the triangle $=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4}(60)^{2}=900 \sqrt{3} \mathrm{~cm}^{2}$
2. The sides of the triangular wall are

Let $a=122 \mathrm{~m}, b=120 \mathrm{~m}, c=22 \mathrm{~m}$
Semi-perimeter,
$s=\frac{a+b+c}{2}=\frac{122+120+22}{2}=\frac{264}{2}=132 \mathrm{~m}$
The area of triangular side wall
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{132(132-122)(132-120)(132-22)}$
$=\sqrt{132 \times 10 \times 12 \times 110}$
$=\sqrt{12 \times 11 \times 10 \times 12 \times 11 \times 10}=1320 \mathrm{~m}^{2}$
Rent for 1 year (i.e., 12 months) per $\mathrm{m}^{2}=₹ 5000$
$\therefore \quad$ Rent for 3 months per $\mathrm{m}^{2}=₹ 5000 \times \frac{3}{12}$
\Rightarrow Rent for 3 months for $1320 \mathrm{~m}^{2}$

$$
=5000 \times \frac{3}{12} \times 1320=5000 \times 3 \times 110=₹ 16,50,000 .
$$

3. Sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m .

Let $a=15 \mathrm{~m}, b=11 \mathrm{~m}, c=6 \mathrm{~m}$
Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{15+11+6}{2}=\frac{32}{2}=16 \mathrm{~m}$
Area of the triangular wall $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{16(16-15)(16-11)(16-6)}$
$=\sqrt{16 \times 1 \times 5 \times 10}=\sqrt{2 \times 400}=20 \sqrt{2} \mathrm{~m}^{2}$
Thus, the required area painted in colour is $20 \sqrt{2} \mathrm{~m}^{2}$.
4. Let the sides of the triangle be $a=18 \mathrm{~cm}, b=10 \mathrm{~cm}$ and c.
Perimeter $=a+b+c=42 \mathrm{~cm}$
$\Rightarrow c=42-(18+10)=14 \mathrm{~cm}$
Now, semi-perimeter, $s=\frac{42}{2}=21 \mathrm{~cm}$
Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-18)(21-10)(21-14)}$
$=\sqrt{21 \times 3 \times 11 \times 7}$
$=\sqrt{3 \times 7 \times 3 \times 11 \times 7}=21 \sqrt{11} \mathrm{~cm}^{2}$
Thus, the required area of the triangle is $21 \sqrt{11} \mathrm{~cm}^{2}$.
5. Perimeter of the triangle $=540 \mathrm{~cm}$
\therefore Semi-perimeter, $s=\frac{540}{2}=270 \mathrm{~cm}$
The sides of the triangle are in the ratio of $12: 17: 25$.
Let $a=12 x \mathrm{~cm}, b=17 x \mathrm{~cm}, c=25 x \mathrm{~cm}$
$\therefore \quad 12 x+17 x+25 x=540$
$\Rightarrow 54 x=540 \Rightarrow x=10$
$\therefore \quad a=12 \times 10=120 \mathrm{~cm}, b=17 \times 10=170 \mathrm{~cm}$ and $c=25 \times 10=250 \mathrm{~cm}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{270(270-120)(270-170)(270-250)}$
$=\sqrt{270 \times 150 \times 100 \times 20}$
$=\sqrt{3 \times 3 \times 3 \times 10 \times 3 \times 5 \times 10 \times 10 \times 10 \times 2 \times 2 \times 5}$
$=\sqrt{10^{2} \times 10^{2} \times 3^{2} \times 3^{2} \times 5^{2} \times 2^{2}}$
$=10 \times 10 \times 3 \times 3 \times 5 \times 2=9000 \mathrm{~cm}^{2}$
6. Equal sides of the triangle are 12 cm each.

Let the third side be $x \mathrm{~cm}$.
Now, perimeter $=30 \mathrm{~cm}$
$\Rightarrow \quad 12+12+x=30$
$\Rightarrow \quad x=6$
\therefore Semi-perimeter, $s=\frac{30}{2}=15 \mathrm{~cm}$

Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{15(15-12)(15-12)(15-6)}$
$=\sqrt{15 \times 3 \times 3 \times 9}=\sqrt{5 \times 3 \times 3 \times 3 \times 3 \times 3}$
$=3 \times 3 \times \sqrt{5 \times 3}=9 \sqrt{15} \mathrm{~cm}^{2}$
Thus, the required area of the triangle is $9 \sqrt{15} \mathrm{~cm}^{2}$.

EXERCISE - 12.2

1. Join B and D such that $\triangle B C D$ is a right triangle.

In right $\triangle B C D, B D^{2}=B C^{2}+C D^{2}$ (By Pythagoras theorem)
$\Rightarrow \quad B D^{2}=12^{2}+5^{2}$
$\Rightarrow \quad B D^{2}=144+25=169$
$\Rightarrow \quad B D=13 \mathrm{~m}$
Now, area of $\triangle B C D=\frac{1}{2} \times$ base \times altitude $_{A}$
$=\frac{1}{2} \times 12 \times 5=30 \mathrm{~m}^{2}$
Now, for $\triangle A B D$, we have
$a=9 \mathrm{~m}, b=8 \mathrm{~m}, c=13 \mathrm{~m}$

Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{9+8+13}{2}=\frac{30}{2}=15 \mathrm{~m}$
Area of $\triangle A B D=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{15(15-9)(15-8)(15-13)}$
$=\sqrt{15 \times 6 \times 7 \times 2}=\sqrt{3 \times 5 \times 3 \times 2 \times 7 \times 2}$
$=3 \times 2 \sqrt{35}=6 \times 5.916 \mathrm{~m}^{2}=35.5 \mathrm{~m}^{2}$ (approx.)
So, area of quadrilateral $A B C D=$ Area of $\triangle B C D+$ Area of $\triangle A B D$
$=30 \mathrm{~m}^{2}+35.5 \mathrm{~m}^{2}=65.5 \mathrm{~m}^{2}$ (approx.)
2. For $\triangle A B C, a=3 \mathrm{~cm}, b=4 \mathrm{~cm}, c=5 \mathrm{~cm}$
\therefore Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{3+4+5}{2}=6 \mathrm{~cm}$
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{6(6-3)(6-4)(6-5)}$
$=\sqrt{6 \times 3 \times 2 \times 1}=6 \mathrm{~cm}^{2}$
For $\triangle A C D, a=5 \mathrm{~cm}, b=4 \mathrm{~cm}, c=5 \mathrm{~cm}$
Semi-perimeter, $s=\frac{a+b+c}{2}$

$=\frac{5+4+5}{2}=\frac{14}{2}=7 \mathrm{~cm}$
Area of $\triangle A C D=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{7(7-5)(7-4)(7-5)}$
$=\sqrt{7 \times 2 \times 3 \times 2}=2 \sqrt{21} \mathrm{~cm}^{2}$
$=2 \times 4.6 \mathrm{~cm}^{2}=9.2 \mathrm{~cm}^{2}$ (approx.)
So, area of quadrilateral $A B C D$
$=$ Area of $\triangle A B C+$ Area of $\triangle A C D$
$=6 \mathrm{~cm}^{2}+9.2 \mathrm{~cm}^{2}=15.2 \mathrm{~cm}^{2}$ (approx.)
3. Area of surface I:

It is an isosceles triangle whose sides are $a=5 \mathrm{~cm}$, $b=5 \mathrm{~cm}, c=1 \mathrm{~cm}$
Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{5+5+1}{2}=\frac{11}{2} \mathrm{~cm}$
Area of surface $\mathrm{I}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{\frac{11}{2}\left(\frac{11}{2}-5\right)\left(\frac{11}{2}-5\right)\left(\frac{11}{2}-1\right)}$
$=\sqrt{\frac{11}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{9}{2}}=\frac{3}{4} \sqrt{11}$
$=0.75 \times 3.3=2.475 \mathrm{~cm}^{2}$ (approx.)
Area of surface II :
It is a rectangle with length 6.5 cm and breadth 1 cm .
Area of surface II $=$ Length \times Breadth $=6.5 \times 1=6.5 \mathrm{~cm}^{2}$ Area of surface III :
It is a trapezium whose parallel sides are 1 cm and 2 cm as shown in the adjoining figure.

Its height, $h=\sqrt{1^{2}-\left(\frac{1}{2}\right)^{2}}=\sqrt{1-\frac{1}{4}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2} \mathrm{~cm}$
Area of surface III $=\frac{1}{2}$ [Sum of the parallel sides] \times Height $=\frac{1}{2} \times(2+1) \times \frac{\sqrt{3}}{2}=\frac{1}{2} \times 3 \times \frac{\sqrt{3}}{2}$
$=\frac{3 \sqrt{3}}{4}=\frac{3 \times 1.732}{4}=1.3 \mathrm{~cm}^{2}$ (approx.)
Area of surface IV :
It is a right triangle with base as 6 cm and height as 1.5 cm .
Area of surface IV $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 6 \times 1.5=4.5 \mathrm{~cm}^{2}$
Area of surface $V=$ Area of surface $I V=4.5 \mathrm{~cm}^{2}$
Thus, the total area of the paper used
$=$ Area of surface $(\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V})$
$=(2.475+6.5+1.3+4.5+4.5) \mathrm{cm}^{2}$
$=19.275 \mathrm{~cm}^{2}=19.3 \mathrm{~cm}^{2}$ (approx.)
4. For the given triangle, we have
$a=28 \mathrm{~cm}, b=30 \mathrm{~cm}, c=26 \mathrm{~cm}$
\therefore Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{28+30+26}{2}$
$=\frac{84}{2}=42 \mathrm{~cm}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{42(42-28)(42-30)(42-26)}$
$=\sqrt{42 \times 14 \times 12 \times 16}=\sqrt{112896}=336 \mathrm{~cm}^{2}$
Area of the parallelogram $=$ Area of the triangle
$\therefore \quad$ Area of the parallelogram $=336 \mathrm{~cm}^{2}$
\Rightarrow Base \times Height $=336$
$\Rightarrow \quad 28 \times h=336$
$\Rightarrow \quad h=\frac{336}{28} \mathrm{~cm}=12 \mathrm{~cm}$
Thus, the required height of
 the parallelogram is 12 cm .
5. Each side of the rhombus $=30 \mathrm{~m}$

One of the diagonal $=48 \mathrm{~m}$
Let $A B C D$ be the given rhombus.
Sides of $\triangle A B D$ are $a=30 \mathrm{~m}, b=30 \mathrm{~m}, c=48 \mathrm{~m}$
Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{30+30+48}{2}$
$=\frac{108}{2}=54 \mathrm{~m}$
Area of $\triangle A B D$
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{54(54-30)(54-30)(54-48)}$
$=\sqrt{54 \times 24 \times 24 \times 6}=432 \mathrm{~m}^{2}$

Since a diagonal divides the rhombus into two congruent triangles.
$\therefore \quad$ Area of $\triangle B C D=432 \mathrm{~m}^{2}$
Total area of the rhombus $=432 \mathrm{~m}^{2}+432 \mathrm{~m}^{2}=864 \mathrm{~m}^{2}$

$$
\text { Area of grass field for } 18 \text { cows }=864 \mathrm{~m}^{2}
$$

\Rightarrow Area of grass field for 1 cow $=\frac{864}{18} \mathrm{~m}^{2}=48 \mathrm{~m}^{2}$
6. Sides of each triangular piece are
$a=20 \mathrm{~cm}, b=50 \mathrm{~cm}, c=50 \mathrm{~cm}$
Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{20+50+50}{2}=\frac{120}{2}=60 \mathrm{~cm}$
Area of each triangular piece
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{60(60-20)(60-50)(60-50)}$
$=\sqrt{60 \times 40 \times 10 \times 10}=200 \sqrt{6} \mathrm{~cm}^{2}$
Area of 5 triangular pieces of one colour
$=5 \times 200 \sqrt{6} \mathrm{~cm}^{2}=1000 \sqrt{6} \mathrm{~cm}^{2}$
Area of 5 triangular pieces of other colour $=1000 \sqrt{6} \mathrm{~cm}^{2}$
7. Area of triangle I :

Since, the diagonals of a square are equal and bisect each other.
$\therefore \quad A C=B D=32 \mathrm{~cm}$
$\therefore \quad$ Height of $\triangle A B D=O A=\frac{1}{2} \times 32 \mathrm{~cm}=16 \mathrm{~cm}$
Area of triangle I $=\frac{1}{2} \times 32 \times 16=256 \mathrm{~cm}^{2}$
Area of triangle II : Since, diagonal of a square divides it into two congruent triangles.
So, area of triangle II
= Area of triangle I
\therefore Area of triangle II $=256 \mathrm{~cm}^{2}$
Area of triangle III :
The sides of triangle III are $a=8 \mathrm{~cm}, b=6 \mathrm{~cm}$ and $c=6 \mathrm{~cm}$
Semi-perimeter, $s=\frac{a+b+c}{2}$
$=\frac{8+6+6}{2}=10 \mathrm{~cm}$

Area of triangle III $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{10(10-8)(10-6)(10-6)}=\sqrt{10 \times 2 \times 4 \times 4}$
$=8 \sqrt{5}=8 \times 2.24=17.92 \mathrm{~cm}^{2}$ (approx.).
So, area of shade I $=256 \mathrm{~cm}^{2}$,
Area of shade II $=256 \mathrm{~cm}^{2}$ and
Area of shade III $=17.92 \mathrm{~cm}^{2}$
8. Sides of the triangle are $a=9 \mathrm{~cm}, b=28 \mathrm{~cm}, c=35 \mathrm{~cm}$ Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{9+28+35}{2}=\frac{72}{2}=36 \mathrm{~cm}$
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{36(36-9)(36-28)(36-35)}$
$=\sqrt{36 \times 27 \times 8 \times 1}=3 \times 2 \times 3 \times 2 \sqrt{3 \times 2}$
$=36 \sqrt{6}=36 \times 2.45=88.2 \mathrm{~cm}^{2}$ (approx.)
Total area of 16 triangles
$=(16 \times 88.2) \mathrm{cm}^{2}=1411.2 \mathrm{~cm}^{2}$ (approx.)
Rate of polishing $=₹ 0.5$ per cm^{2}
$\therefore \quad$ Cost of polishing the tiles
$=₹(0.5 \times 1411.2)=₹ 705.60$ (approx.)
9. Let the given field in the form of a trapezium be $A B C D$ such that parallel sides are $A B=10 \mathrm{~m}$ and $D C=25 \mathrm{~m}$ and non-parallel sides are 13 m and 14 m .
Draw $B E \| A D$ meeting $C D$ at E such that $B E=13 \mathrm{~m}$.

For $\triangle B C E$:
Sides of $\triangle B C E$ are $a=13 \mathrm{~m}, b=14 \mathrm{~m}, c=15 \mathrm{~m}$
\therefore Semi-perimeter, $s=\frac{a+b+c}{2}=\frac{13+14+15}{2}=\frac{42}{2}=21 \mathrm{~m}$
Area of $\triangle B C E=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-13)(21-14)(21-15)}$
$=\sqrt{21 \times 8 \times 7 \times 6}=84 \mathrm{~m}^{2}$
Let the height of the $\triangle B C E$ corresponding to the side 15 m be h metres.
Area of $\triangle B C E=\frac{1}{2} \times$ base \times height
$\Rightarrow \frac{1}{2} \times 15 \times h=84 \Rightarrow h=\frac{84 \times 2}{15}=\frac{56}{5} \mathrm{~m}$
For parallelogram $A B E D$:
Area of a parallelogram $=$ base \times height
$=10 \times \frac{56}{5}=2 \times 56=112 \mathrm{~m}^{2}$
So, area of the field
$=$ Area of $\triangle B C E+$ Area of parallelogram $A B E D$
$=84+112=196 \mathrm{~m}^{2}$

mtG BEST SELLING BOOKS FOR CLASS 9

