Heron's Formula

SOLUTIONS

4.

EXERCISE - 12.1
1. Let each side of the equilateral triangle be <i>a</i> .
Semi-perimeter of the triangle, $s = \frac{a+a+a}{2} = \frac{3a}{2}$
Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{s(s-a)(s-a)(s-a)} = \sqrt{s(s-a)^3}$
$=\sqrt{\frac{3a}{2}\left(\frac{3a}{2}-a\right)^3} = \sqrt{\frac{3a}{2}\times\left(\frac{a}{2}\right)^3}$ a a SCHOOL AHEAD
$= \sqrt{\frac{3a^4}{16}} = \frac{\sqrt{3}}{4}a^2 \text{ sq. units.}$
Now, its perimeter is 180 cm.
$\therefore a + a + a = 180 \text{ cm}$
$\Rightarrow 3a = 180 \Rightarrow a = \frac{180}{3} = 60 \text{ cm}$
Thus, area of the triangle $=\frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4}(60)^2 = 900\sqrt{3} \text{ cm}^2$
2. The sides of the triangular wall are
Let $a = 122 \text{ m}, b = 120 \text{ m}, c = 22 \text{ m}$
Semi-perimeter, a+b+c = 122+120+22 = 264
$s = \frac{a+b+c}{2} = \frac{122+120+22}{2} = \frac{264}{2} = 132 \text{ m}$
The area of triangular side wall
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{132(132 - 122)(132 - 120)(132 - 22)}$
$=\sqrt{132\times10\times12\times110}$
= $\sqrt{12 \times 11 \times 10 \times 12 \times 11 \times 10}$ = 1320 m ² Rent for 1 year (<i>i.e.</i> , 12 months) per m ² = ₹ 5000
\therefore Rent for 3 months per m ² = ₹ 5000 × $\frac{3}{12}$
\Rightarrow Rent for 3 months for 1320 m ² 12
$= 5000 \times \frac{3}{12} \times 1320 = 5000 \times 3 \times 110 = ₹ 16,50,000.$
3. Sides of the wall are 15 m, 11 m and 6 m. Let $a = 15$ m, $b = 11$ m, $c = 6$ m
Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{15+11+6}{2} = \frac{32}{2} = 16$ m
Area of the triangular wall $= \sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{16(16-15)(16-11)(16-6)}$
$=\sqrt{16\times1\times5\times10}=\sqrt{2\times400}=20\sqrt{2}\mathrm{m}^2$
Thus, the required area painted in colour is $20\sqrt{2} \text{ m}^2$.

NCERT FOCUS

and c. Perimeter = a + b + c = 42 cm \Rightarrow c = 42 - (18 + 10) = 14 cm Now, semi-perimeter, $s = \frac{42}{2} = 21$ cm Area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{21(21-18)(21-10)(21-14)}$ $=\sqrt{21\times3\times11\times7}$ $=\sqrt{3\times7\times3\times11\times7}=21\sqrt{11}$ cm² Thus, the required area of the triangle is $21\sqrt{11}$ cm². 5. Perimeter of the triangle = 540 cm Semi-perimeter, $s = \frac{540}{2} = 270$ cm The sides of the triangle are in the ratio of 12 : 17 : 25. Let a = 12x cm, b = 17x cm, c = 25x cm \therefore 12x + 17x + 25x = 540 $\Rightarrow 54x = 540 \Rightarrow x = 10$ \therefore $a = 12 \times 10 = 120$ cm, $b = 17 \times 10 = 170$ cm and $c = 25 \times 10 = 250$ cm Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{270(270-120)(270-170)(270-250)}$ $=\sqrt{270\times150\times100\times20}$ $= \sqrt{3 \times 3 \times 3 \times 10 \times 3 \times 5 \times 10 \times 10 \times 10 \times 2 \times 2 \times 5}$ $=\sqrt{10^2 \times 10^2 \times 3^2 \times 3^2 \times 5^2 \times 2^2}$ $= 10 \times 10 \times 3 \times 3 \times 5 \times 2 = 9000 \text{ cm}^2$ Equal sides of the triangle are 12 cm each. 6. Let the third side be x cm. Now, perimeter = 30 cm \Rightarrow 12 + 12 + x = 30 x = 6 \Rightarrow Semi-perimeter, $s = \frac{30}{2} = 15$ cm ÷. x cm Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{15(15-12)(15-12)(15-6)}$

Let the sides of the triangle be a = 18 cm, b = 10 cm

$$=\sqrt{15\times3\times3\times9} = \sqrt{5\times3\times3\times3\times3\times3}$$

$$= 3 \times 3 \times \sqrt{5 \times 3} = 9\sqrt{15} \text{ cm}^2$$

Thus, the required area of the triangle is $9\sqrt{15}$ cm².

MtG 100 PERCENT Mathematics Class-9

EXERCISE - 12.2

Join *B* and *D* such that $\triangle BCD$ is a right triangle. 1. In right $\triangle BCD$, $BD^2 = BC^2 + CD^2$ (By Pythagoras theorem) $BD^2 = 12^2 + 5^2$ \Rightarrow $\Rightarrow BD^2 = 144 + 25 = 169$ \Rightarrow *BD* = 13 m Now, area of $\Delta BCD = \frac{1}{2} \times \text{base} \times \text{altitude}_A$ $=\frac{1}{2} \times 12 \times 5 = 30 \text{ m}^2$ 9 m 5 m Now, for $\triangle ABD$, we have a = 9 m, b = 8 m, c = 13 mSemi-perimeter, $s = \frac{a+b+c}{2} = \frac{9+8+13}{2} = \frac{30}{2} = 15 \text{ m}$ Area of $\triangle ABD = \sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{15(15-9)(15-8)(15-13)}$ $=\sqrt{15\times6\times7\times2}=\sqrt{3\times5\times3\times2\times7\times2}$ $= 3 \times 2\sqrt{35} = 6 \times 5.916 \text{ m}^2 = 35.5 \text{ m}^2 \text{ (approx.)}$ So, area of quadrilateral ABCD = Area of ΔBCD + Area of $\triangle ABD$ $= 30 \text{ m}^2 + 35.5 \text{ m}^2 = 65.5 \text{ m}^2 \text{ (approx.)}$ For $\triangle ABC$, a = 3 cm, b = 4 cm, c = 5 cm 2. Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{3+4+5}{2} = 6$ cm Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ D 4 cm $=\sqrt{6(6-3)(6-4)(6-5)}$ 5 cm $=\sqrt{6\times3\times2\times1}=6$ cm² 4 cm For $\triangle ACD$, a = 5 cm, b = 4 cm, c = 5 cm Semi-perimeter, $s = \frac{a+b+c}{2}$ 3 cm $=\frac{5+4+5}{2}=\frac{14}{2}=7$ cm Area of $\triangle ACD = \sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{7(7-5)(7-4)(7-5)}$ $=\sqrt{7\times2\times3\times2}=2\sqrt{21}\,\mathrm{cm}^2$ 2 $= 2 \times 4.6 \text{ cm}^2 = 9.2 \text{ cm}^2$ (approx.) So, area of quadrilateral ABCD = Area of $\triangle ABC$ + Area of $\triangle ACD$ $= 6 \text{ cm}^2 + 9.2 \text{ cm}^2 = 15.2 \text{ cm}^2 \text{ (approx.)}$ Area of surface I: 3. It is an isosceles triangle whose sides are a = 5 cm, ÷. b = 5 cm, c = 1 cm \Rightarrow Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{5+5+1}{2} = \frac{11}{2}$ cm \Rightarrow Area of surface I = $\sqrt{s(s-a)(s-b)(s-c)}$ \Rightarrow $=\sqrt{\frac{11}{2}(\frac{11}{2}-5)(\frac{11}{2}-5)(\frac{11}{2}-1)}$

$$=\sqrt{\frac{11}{2}} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{9}{2} = \frac{3}{4}\sqrt{11}$$

 $= 0.75 \times 3.3 = 2.475 \text{ cm}^2 \text{ (approx.)}$

Area of surface II :

It is a rectangle with length 6.5 cm and breadth 1 cm.

Area of surface II = Length × Breadth = $6.5 \times 1 = 6.5 \text{ cm}^2$ Area of surface III :

It is a trapezium whose parallel sides are 1 cm and 2 cm as shown in the adjoining figure.

$$1 \text{ cm} \qquad \sqrt{3} \text{ cm} \qquad 1 \text{ cm} \\ 4 \frac{1}{2} \text{ cm} \rightarrow 4 - 1 \text{ cm} \rightarrow 4 \frac{1}{2} \text{ cm} \rightarrow 1 \text{ cm}$$

Its height, $h = \sqrt{1^2 - (\frac{1}{2})^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$ cm

Area of surface III = $\frac{1}{2}$ [Sum of the parallel sides] × Height

$$= \frac{1}{2} \times (2+1) \times \frac{\sqrt{3}}{2} = \frac{1}{2} \times 3 \times \frac{\sqrt{3}}{2}$$
$$= \frac{3\sqrt{3}}{4} = \frac{3 \times 1.732}{4} = 1.3 \text{ cm}^2 \text{ (approx.)}$$

Area of surface IV :

It is a right triangle with base as 6 cm and height as 1.5 cm.

Area of surface IV = $\frac{1}{2}$ × base × height

$$=\frac{1}{2}\times6\times1.5=4.5$$
 cm²

Area of surface V = Area of surface IV = 4.5 cm^2 Thus, the total area of the paper used = Area of surface (I + II + III + IV + V)

 $= (2.475 + 6.5 + 1.3 + 4.5 + 4.5) \text{ cm}^2$

 $= 19.275 \text{ cm}^2 = 19.3 \text{ cm}^2 \text{ (approx.)}$

- For the given triangle, we have a = 28 cm, b = 30 cm, c = 26 cm
- Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{28+30+26}{2}$

$$=\frac{84}{2}=42$$
 cm

Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

 $=\sqrt{42(42-28)(42-30)(42-26)}$

 $=\sqrt{42 \times 14 \times 12 \times 16} = \sqrt{112896} = 336 \text{ cm}^2$

Area of the parallelogram = Area of the triangle

- Area of the parallelogram = 336 cm^2
- Base × Height = 336
- $28 \times h = 336$
 - $h = \frac{336}{28}$ cm = 12 cm

Thus, the required height of the parallelogram is 12 cm.

5. Each side of the rhombus = 30 mOne of the diagonal = 48 m Let ABCD be the given rhombus. Sides of $\triangle ABD$ are a = 30 m, b = 30 m, c = 48 m Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{30+30+48}{2}$ $=\frac{108}{2}=54$ m Area of $\triangle ABD$ $=\sqrt{s(s-a)(s-b)(s-c)}$ 48 m 3011 $=\sqrt{54(54-30)(54-30)(54-48)}$ $=\sqrt{54\times24\times24\times6}=432$ m² Since a diagonal divides the rhombus into two congruent triangles. Area of $\triangle BCD = 432 \text{ m}^2$:. Total area of the rhombus = $432 \text{ m}^2 + 432 \text{ m}^2 = 864 \text{ m}^2$ Area of grass field for $18 \text{ cows} = 864 \text{ m}^2$ Area of grass field for 1 cow = $\frac{864}{18}$ m² = 48 m² \Rightarrow Sides of each triangular piece are 6. a = 20 cm, b = 50 cm, c = 50 cmSemi-perimeter, $s = \frac{a+b+c}{2} = \frac{20+50+50}{2} = \frac{120}{2} = 60$ cm Area of each triangular piece $=\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{60(60-20)(60-50)(60-50)}$ $=\sqrt{60 \times 40 \times 10 \times 10} = 200\sqrt{6} \text{ cm}^2$ Area of 5 triangular pieces of one colour $=5 \times 200\sqrt{6} \text{ cm}^2 = 1000\sqrt{6} \text{ cm}^2$ Area of 5 triangular pieces of other colour = $1000\sqrt{6}$ cm² Area of triangle I: 7. Since, the diagonals of a square are equal and bisect each other. AC = BD = 32 cm*.*.. Height of $\triangle ABD = OA = \frac{1}{2} \times \frac{32}{2}$ cm = 16 cm ÷. Area of triangle I = $\frac{1}{2} \times 32 \times 16 = 256$ cm² Area of triangle II : Since, diagonal of a square divides it into two congruent triangles.

Area of triangle III = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{10(10-8)(10-6)(10-6)} = \sqrt{10\times2\times4\times4}$ $= 8\sqrt{5} = 8 \times 2.24 = 17.92 \text{ cm}^2 \text{ (approx.)}.$ So, area of shade I = 256 cm^2 , Area of shade II = 256 cm^2 and Area of shade III = 17.92 cm^2 Sides of the triangle are a = 9 cm, b = 28 cm, c = 35 cmSemi-perimeter, $s = \frac{a+b+c}{2} = \frac{9+28+35}{2} = \frac{72}{2} = 36 \text{ cm}$ Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{36(36-9)(36-28)(36-35)}$ $=\sqrt{36\times27\times8\times1}=3\times2\times3\times2\sqrt{3\times2}$ $= 36\sqrt{6} = 36 \times 2.45 = 88.2 \text{ cm}^2 \text{ (approx.)}$ Total area of 16 triangles $= (16 \times 88.2) \text{ cm}^2 = 1411.2 \text{ cm}^2 \text{ (approx.)}$ Rate of polishing = ₹ 0.5 per cm² ... Cost of polishing the tiles = ₹ (0.5 × 1411.2) = ₹ 705.60 (approx.) Let the given field in the form of a trapezium 9.

9. Let the given field in the form of a trapezium be *ABCD* such that parallel sides are AB = 10 m and DC = 25 m and non-parallel sides are 13 m and 14 m. Draw *BE* || *AD* meeting *CD* at *E* such that *BE* = 13 m.

For $\triangle BCE$:

Sides of
$$\triangle BCE$$
 are $a = 13$ m, $b = 14$ m, $c = 15$ m
 \therefore Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{13+14+15}{2} = \frac{42}{2} = 21$ m
Area of $\triangle BCE = \sqrt{s(s-a)(s-b)(s-c)}$
 $= \sqrt{21(21-13)(21-14)(21-15)}$

 $=\sqrt{21\times8\times7\times6}=84 \text{ m}^2$

Let the height of the $\triangle BCE$ corresponding to the side 15 m be *h* metres.

Area of
$$\triangle BCE = \frac{1}{2} \times base \times height$$

$$\Rightarrow \frac{1}{2} \times 15 \times h = 84 \Rightarrow h = \frac{84 \times 2}{15} = \frac{56}{5} \text{ m}$$

For parallelogram *ABED*:

Area of a parallelogram = base × height

$$=10 \times \frac{56}{5} = 2 \times 56 = 112 \text{ m}^2$$

So, area of the field

= Area of $\triangle BCE$ + Area of parallelogram *ABED*

 $= 84 + 112 = 196 \text{ m}^2$

mtg BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information