Probability

EXERCISE - 15.1

1. Here, the total number of trials $=30$

Number of times, the ball touched boundary $=6$
$\therefore \quad$ Number of times, the ball missed the boundary

$$
=30-6=24
$$

P (not hitting the boundary)
No.of times the batswoman did not hit
$=\frac{\text { the boundary }}{\text { Total number of ballsshe played }}$
$=\frac{24}{30}=\frac{4}{5}=0.8$
2. Total number of families $=1500$.
(i) Number of families having 2 girls $=475$
\therefore Probability that the family, chosen at random, have
2 girls $=\frac{475}{1500}=\frac{19}{60}$
(ii) Number of families having 1 girl $=814$
\therefore Probability that the family chosen at random, have
1 girl $=\frac{814}{1500}=\frac{407}{750}$
(iii) Number of families having no girl = 211
\therefore Probability that the family, chosen at random, have no girl $=\frac{211}{1500}$
Now, the sum of the obtained probabilities

$$
=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}=\frac{475+814+211}{1500}=\frac{1500}{1500}=1
$$

i.e., sum of the above probabilities is 1 .
3. From the graph, we have

Total number of students, born in various months $=40$
Number of students born in August $=6$
\therefore Probability that a student was born in August $=\frac{6}{40}=\frac{3}{20}$
4. Total number of times the three coins are tossed $=200$

Number of times 2 heads comes up $=72$
$\therefore \quad$ Probability of 2 heads coming up $=\frac{72}{200}=\frac{9}{25}$
5. Here, total number of families $=2400$
(i) Number of families earning
₹ 10000-13000 per month and owning exactly 2 vehicles $=29$
$\therefore \quad$ Probability that the family is earning ₹ 10000-13000 and owning exactly 2 vehicles $=\frac{29}{2400}$
(ii) Number of families earning ₹ 16000 or more per month and owning exactly 1 vehicle $=579$
$\therefore \quad$ Probability that the family is earning ₹ 16000 or more and owning exactly 1 vehicle $=\frac{579}{2400}$
(iii) Number of families earning less than ₹ 7000 per month and does not own any vehicle $=10$
\therefore Probability that the family is earning less than $₹ 7000$ and owning no vehicle $=\frac{10}{2400}=\frac{1}{240}$
(iv) Number of families earning ₹ 13000-16000 per month and owning more than 2 vehicles $=25$
$\therefore \quad$ Probability that the family is earning ₹ $13000-16000$ and owning more than 2 vehicles $=\frac{25}{2400}=\frac{1}{96}$
(v) Number of families owning not more than 1 vehicle $=$ [Number of families having no vehicle $]+[$ Number of families having only 1 vehicle]
$=[10+1+2+1]+[160+305+535+469+579]$
$=14+2048=2062$
$\therefore \quad$ Probability that the family is owning not more than 1 vehicle $=\frac{2062}{2400}=\frac{1031}{1200}$
6. From the table, we have

Total number of students $=90$
(i) Number of students who obtained less than 20% marks $=7$
$\therefore \quad$ Probability that a student obtained less than 20% marks $=\frac{7}{90}$
(ii) Number of students who obtained marks 60 or above $=15+8=23$
$\therefore \quad$ Probability that a student obtained marks 60 and above $=\frac{23}{90}$.
7. Total number of students in the survey $=200$
(i) Number of students who like statistics $=135$
$\therefore \quad$ Probability that a student, chosen at random, likes statistics $=\frac{135}{200}=\frac{27}{40}$
(ii) Number of students who do not like statistics $=65$
$\therefore \quad$ Probability that a student, chosen at random, dislikes
statistics $=\frac{65}{200}=\frac{13}{40}$
8. Total number of engineers $=40$
(i) Number of engineers, living at a distance less than 7 km from their work place $=9$
$\therefore \quad$ Probability that an engineer, lives at distance less than 7 km from their work place $=\frac{9}{40}$
(ii) Number of engineers, living at a distance more than or equal to 7 km from their work place $=31$
$\therefore \quad$ Probability that an engineer lives at a distance more than or equal to 7 km from their work place $=\frac{31}{40}$
(iii) Number of engineers living within $\frac{1}{2} \mathrm{~km}$ from their work place $=0$
\therefore Probability that an engineer lives within $\frac{1}{2} \mathrm{~km}$ from their work place $=\frac{0}{40}=0$
9. It is an activity. Do it yourself.
10. It is a class room activity for students. Do it yourself.
11. Total number of bags $=11$

Number of bags having more than 5 kg of flour $=7$
\therefore Probability that a bag contain more than 5 kg of flour
$=\frac{7}{11}$
12.

Concentration of sulphur dioxide (in ppm)	Tally Marks	Frequency				
$0.00-0.04$	$\\|\\|\\|$	4				
$0.04-0.08$	$N\\|\\|\\|\\|$	9				
$0.08-0.12$	$N\\|\\|\\|$	9				
$0.12-0.16$	$\\| \mid$	2				
$0.16-0.20$	$\\|\\|\\|$	4				
$0.20-0.24$	$\\| \mid$	2				
Total		30				

Total number of days $=30$
Number of days on which sulphur dioxide concentration is in the interval $0.12-0.16=2$
\therefore Probability that concentration of sulphur dioxide on a day, chosen at random, is in interval 0.12-0.16 $=\frac{2}{30}=\frac{1}{15}$
13.

Blood groups	Tally Marks	Number of Students			
A	$N\\|\\|\\|$	9			
B	$N \mid$	6			
O	$N+\\| \\|$	12			
AB	$\\|\\|$	3			
Total		30			

Total number of students $=30$
Number of students having blood group $\mathrm{AB}=3$
$\therefore \quad$ Probability that a student, selected at random, has blood group $\mathrm{AB}=\frac{3}{30}=\frac{1}{10}$.

mtG BEST SELLING BOOKS FOR CLASS 9

