Linear Equations in Two Variables

EXERCISE - 4.1

1. Let the cost of a note book $=₹ x$
and the cost of a pen $=₹ y$
According to the condition, we have
[Cost of a notebook] $=2 \times$ [Cost of a pen]
i.e. $(x)=2 \times(y) \Rightarrow x=2 y \Rightarrow x-2 y=0$

Thus, the required linear equation is $x-2 y=0$.
2. (i) We have, $2 x+3 y=(9.3 \overline{5})$
$\Rightarrow 2 x+3 y+(-9.3 \overline{5})=0$
Comparing it with $a x+b y+c=0$, we get $a=2, b=3$ and $c=-9.3 \overline{5}$.
(ii) We have, $x-\frac{y}{5}-10=0$
$\Rightarrow x+\left(-\frac{1}{5}\right) y+(-10)=0$
Comparing it with $a x+b y+c=0$, we get
$a=1, b=-\frac{1}{5}$ and $c=-10$
(iii) We have, $-2 x+3 y=6$
$\Rightarrow \quad(-2) x+3 y+(-6)=0$
Comparing it with $a x+b y+c=0$, we get $a=-2, b=3$ and $c=-6$.
(iv) We have, $x=3 y \Rightarrow x+(-3) y+0=0$

Comparing it with $a x+b y+c=0$, we get $a=1$, $b=-3$ and $c=0$.
(v) We have, $2 x=-5 y \Rightarrow 2 x+5 y+0=0$

Comparing it with $a x+b y+c=0$, we get $a=2$, $b=5$ and $c=0$.
(vi) We have, $3 x+2=0 \Rightarrow 3 x+0 y+2=0$

Comparing it with $a x+b y+c=0$, we get $a=3$, $b=0$ and $c=2$.
(vii) We have, $y-2=0 \Rightarrow 0 x+1 y+(-2)=0$

Comparing it with $a x+b y+c=0$, we get $a=0$, $b=1$ and $c=-2$.
(viii) We have, $5=2 x \Rightarrow 5-2 x=0$
$\Rightarrow-2 x+0 y+5=0 \Rightarrow(-2) x+0 y+5=0$
Comparing it with $a x+b y+c=0$, we get $a=-2$, $b=0$ and $c=5$.

EXERCISE - 4.2

1. Option (iii) is true. For every value of x, we get a corresponding value of y and vice-versa. Therefore, the linear equation has infinitely many solutions.
2. (i) $2 x+y=7$

When $x=0,2(0)+y=7 \quad \Rightarrow \quad 0+y=7 \Rightarrow y=7$
$\therefore \quad$ Solution is $(0,7)$.
When $x=1,2(1)+y=7 \Rightarrow y=7-2 \Rightarrow y=5$
\therefore Solution is $(1,5)$.
When $x=2,2(2)+y=7 \Rightarrow y=7-4 \Rightarrow y=3$
$\therefore \quad$ Solution is $(2,3)$.
When $x=3,2(3)+y=7 \Rightarrow y=7-6 \Rightarrow y=1$
\therefore Solution is $(3,1)$.
Thus, the four solutions are $(0,7),(1,5),(2,3)$ and $(3,1)$.
(ii) $\pi x+y=9$

When $x=0, \pi(0)+y=9 \Rightarrow y=9$
\therefore Solution is $(0,9)$.
When $x=1, \pi(1)+y=9 \Rightarrow y=9-\pi$
$\therefore \quad$ Solution is $(1,(9-\pi))$.
When $x=2, \pi(2)+y=9 \Rightarrow y=9-2 \pi$
$\therefore \quad$ Solution is $(2,(9-2 \pi))$.
When $x=-1, \pi(-1)+y=9 \Rightarrow-\pi+y=9 \Rightarrow y=9+\pi$
$\therefore \quad$ Solution is $(-1,(9+\pi))$.
Thus, the four solutions are $(0,9),(1,(9-\pi)),(2,(9-2 \pi))$ and $(-1,(9+\pi))$.
(iii) $x=4 y$

When $x=0,4 y=0 \Rightarrow y=0$
$\therefore \quad$ Solution is $(0,0)$.
When $x=1,4 y=1 \Rightarrow y=\frac{1}{4}$
$\therefore \quad$ Solution is $\left(1, \frac{1}{4}\right)$.
When $x=4,4=4 y \Rightarrow y=\frac{4}{4}=1 \Rightarrow y=1$
$\therefore \quad$ Solution is $(4,1)$.
When $x=-4,4 y=-4$
$\Rightarrow y=\frac{-4}{4}=-1 \Rightarrow y=-1$
$\therefore \quad$ Solution is $(-4,-1)$.
Thus, the four solutions are $(0,0),(1,1 / 4),(4,1)$ and $(-4,-1)$.
3. (i) $(0,2)$ means $x=0$ and $y=2$

Putting $x=0$ and $y=2$ in $x-2 y=4$, we get
L.H.S. $=0-2(2)=-4$. But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S.
$\therefore \quad x=0, y=2$ is not a solution.
(ii) $(2,0)$ means $x=2$ and $y=0$

Putting $x=2$ and $y=0$ in $x-2 y=4$, we get
L.H.S. $=2-2(0)=2-0=2$. But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S.
$\therefore \quad(2,0)$ is not a solution.
(iii) $(4,0)$ means $x=4$ and $y=0$

Putting $x=4$ and $y=0$ in $x-2 y=4$, we get
L.H.S. $=4-2(0)=4-0=4=$ R.H.S.
$\therefore \quad(4,0)$ is a solution.
(iv) $(\sqrt{2}, 4 \sqrt{2})$ means $x=\sqrt{2}$ and $y=4 \sqrt{2}$

Putting $x=\sqrt{2}$ and $y=4 \sqrt{2}$ in $x-2 y=4$, we get
L.H.S. $=\sqrt{2}-2(4 \sqrt{2})=\sqrt{2}-8 \sqrt{2}=\sqrt{2}(1-8)=-7 \sqrt{2}$

But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S. $\therefore(\sqrt{2}, 4 \sqrt{2})$ is not a solution.
(v) $(1,1)$ means $x=1$ and $y=1$

Putting $x=1$ and $y=1$ in $x-2 y=4$, we get
L.H.S. $=1-2(1)=1-2=-1$. But R.H.S. $=4$
\Rightarrow L.H.S. \neq R.H.S. $\therefore(1,1)$ is not a solution.
4. We have $2 x+3 y=k$

Putting $x=2$ and $y=1$ in $2 x+3 y=k$, we get

$$
2(2)+3(1)=k \Rightarrow 4+3=k \Rightarrow 7=k
$$

Thus, the required value of k is 7 .

EXERCISE - 4.3

1. (i) We have, $x+y=4 \Rightarrow y=4-x$
$\therefore \quad$ When $x=0$, then $y=4-0=4$
When $x=1$, then $y=4-1=3$
When $x=2$, then $y=4-2=2$
Thus, we have the following solution table :

\boldsymbol{x}	0	1	2
y	4	3	2

Plot the points $(0,4),(1,3)$ and $(2,2)$ on a graph paper and join them by a straight line.

Thus, the line $A B$ is the required graph of $x+y=4$.
(ii) We have, $x-y=2 \Rightarrow y=x-2$
$\therefore \quad$ When $x=0$, then $y=0-2=-2$
When $x=1$, then $y=1-2=-1$
When $x=2$, then $y=2-2=0$
Thus, we have the following solution table :

x	0	1	2
y	-2	-1	0

Now, let us plot the points $(0,-2),(1,-1)$ and $(2,0)$ on a graph paper and join them by a straight line.

Thus, the line $P Q$ is required graph of $x-y=2$.
(iii) We have, $y=3 x$
$\therefore \quad$ When $x=0$, then $y=3(0) \Rightarrow y=0$
When $x=1$, then $y=3(1) \Rightarrow y=3$
When $x=-1$, then $y=3(-1) \Rightarrow y=-3$
Thus, we get the following solution table:

x	0	1	-1
y	0	3	-3

Now, let us plot the points $(0,0),(1,3)$ and $(-1,-3)$ on a graph paper and join them by a straight line.

Thus, the line $L M$ is the required graph of $y=3 x$.
(iv) We have, $3=2 x+y \Rightarrow y=3-2 x$
$\therefore \quad$ When $x=0$, then $y=3-2(0) \Rightarrow y=3$
When $x=1$, then $y=3-2(1) \Rightarrow y=1$
When $x=2$, then $y=3-2(2)=3-4=-1 \Rightarrow y=-1$
Thus, we have the following solution table:

x	0	1	2
y	3	1	-1

Now, let us plot the points $(0,3),(1,1)$ and $(2,-1)$ on a graph paper and join them by a straight line.

Thus, the line $C D$ is the required graph of $3=2 x+y$.
2. $(2,14)$ means $x=2$ and $y=14$

Following equations will pass through $(2,14)$ as $(2,14)$ is a solution of these equations.
(i) $x+y=16$
(ii) $7 x-y=0$

There are infinite number of lines which can pass through $(2,14)$, because infinite number of lines can pass through a point.
3. The given equation of line is $3 y=a x+7$
$\because \quad(3,4)$ lies on the given line.
$\therefore \quad$ It must satisfy the equation $3 y=a x+7$
Putting $x=3$ and $y=4$ in the given equation, we get

$$
3 \times 4=a \times 3+7 \quad \Rightarrow \quad 12=3 a+7
$$

$\Rightarrow 3 a=12-7=5 \Rightarrow a=\frac{5}{3}$
Thus, the required value of a is $5 / 3$.
4. Here, total distance covered $=x \mathrm{~km}$ and total taxi fare $=₹ y$
Clearly, fare for the $1^{\text {st }} \mathrm{km}=₹ 8$ and for remaining $(x-1) \mathrm{km}$ distance $=₹ 5 \times(x-1)$
$\therefore \quad$ Total taxi fare $=₹ 8+₹ 5(x-1)$
Now, according to the condition, we get
$y=8+5(x-1) \Rightarrow y=8+5 x-5 \Rightarrow y=5 x+3$, which is the required linear equation representing the given information.
Graph : We have $y=5 x+3$
$\therefore \quad$ When $x=0$, then $y=5(0)+3 \Rightarrow y=3$
When $x=-1$, then $y=5(-1)+3 \Rightarrow y=-2$
When $x=-2$, then $y=5(-2)+3 \Rightarrow y=-7$
Thus, we have the following solution table:

x	0	-1	-2
y	3	-2	-7

Now, let us plot the points $(0,3),(-1,-2)$ and $(-2,-7)$ on a graph paper and join them, by a straight line, as shown below.

Thus, the line $P Q$ is the required graph of $y=5 x+3$.
5. For Fig. (1), the correct linear equation is $x+y=0$
$[\because(-1,1)$ is satisfying only $x+y=0]$
For Fig. (2), the correct linear equation is $y=-x+2$
$[\because(-1,3)$ is satisfying only $y=-x+2]$
6. Constant force is 5 units. Let the distance travelled by the body $=x$ units and work done $=y$ units. Then, according to question, we have $y \propto x$
$\Rightarrow y=k x$, where k is a constant force
$\Rightarrow y=5 \times x \Rightarrow y=5 x$, which is the required equation
$[\because$ It is given that the constant force is 5 units]
When $x=0$, then $y=5(0)=0$
When $x=1$, then $y=5(1)=5$
When $x=-1$, then $y=5(-1)=-5$
Thus, we have the following solution table:

x	0	1	-1
y	0	5	-5

Now, let us plot the points $(0,0),(1,5)$ and $(-1,-5)$ on a graph paper and join them, by a straight line, as shown below:

(i) Given, distance travelled $=2$ units i.e., $x=2$.

From the graph, it is clear that if $x=2$, then $y=10$ units
\Rightarrow Work done $=10$ units
(ii) Given, distance travelled $=0$ unit i.e., $x=0$
$\therefore \quad$ From the graph, it is clear that if $x=0$, then $y=0$
\Rightarrow Work done $=0$ unit
7. Let the contribution of Yamini $=₹ x$ and the contribution of Fatima $=₹ y$
Then, we have $x+y=100 \Rightarrow y=100-x$
$\therefore \quad$ When $x=0, y=100-0=100$
When $x=50, y=100-50=50$
When $x=100, y=100-100=0$
Thus, we have the following solution table:

\boldsymbol{x}	0	50	100
\boldsymbol{y}	100	50	0

Now, let us plot the points $(0,100),(50,50)$ and $(100,0)$ on a graph paper and join them by a straight line as shown below.

Thus, the line $P Q$ is the required graph.
8. (i) We have $\mathrm{F}=\left(\frac{9}{5}\right) \mathrm{C}+32$
$\therefore \quad$ When $\mathrm{C}=0$, then $\mathrm{F}=\left(\frac{9}{5}\right) \times 0+32=32$
When $\mathrm{C}=-15$, then $\mathrm{F}=\left(\frac{9}{5}\right)(-15)+32=-27+32=5$
When $C=-10$, then $F=\frac{9}{5}(-10)+32=-18+32=14$
Thus, we have the following solution table:

\mathbf{C}	0	-15	-10
\mathbf{F}	32	5	14

Let us take Celsius along x-axis and Fahrenheit along y-axis.
Now, plot the points $(0,32),(-15,5)$ and $(-10,14)$ on a graph paper and join them by a straight line as shown below.
(ii) From the graph, we have $86^{\circ} \mathrm{F}$ corresponding to $30^{\circ} \mathrm{C}$

(iii) From the graph, we have $35^{\circ} \mathrm{C}$ corresponding to $95^{\circ} \mathrm{F}$.
(iv) From the graph, we have $0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$ and $0^{\circ} \mathrm{F}=-17.8^{\circ} \mathrm{C}$
(v) When $\mathrm{F}=\mathrm{C}$ (numerically), then from given equation, we get
$\mathrm{F}=\frac{9}{5} \mathrm{~F}+32 \Rightarrow \mathrm{~F}-\frac{9}{5} \mathrm{~F}=32 \Rightarrow-\frac{4}{5} \mathrm{~F}=32 \Rightarrow \mathrm{~F}=-40$
Thus, temperature -40° is same in both Fahrenheit and Celsius.

EXERCISE - 4.4

1. Given, equation is $y=3$.
(i) If $y=3$ is treated as an equation in one variables, then it will represent a point on the number line, as shown below.

(ii) If $y=3$ is treated as an equation in two variable, then it will represent a line parallel to x-axis and passing through $(0,3)$, as shown below.

2. Given, equation is
$2 x+9=0 \Rightarrow 2 x=-9 \Rightarrow x=\frac{-9}{2}$
(i) If $x=-9 / 2$ is treated as an equation in one variable, then it will represent a point on the number line, as shown below.

(ii) If $x=-\frac{9}{2}$ is treated as an equation in two variables, then it will represent a line parallel to y-axis and passing through $\left(-\frac{9}{2}, 0\right)$ as shown below.

mtG BEST SELLING BOOKS FOR CLASS 9

